Giải bài 3 trang 76 SGK Toán 8 tập 2– Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài 3. Các trường hợp đồng dạng của hai tam giác vuông


Giải bài 3 trang 76 SGK Toán 8 tập 2– Chân trời sáng tạo

Trong Hình 10, biết

Đề bài

Trong Hình 10, biết \(MB = 20m,MF = 2m,EF = 1,65m\). Tính chiều cao \(AB\) của ngọn tháp.

Phương pháp giải - Xem chi tiết

Nếu một tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Lời giải chi tiết

Xét \(\Delta MEF\) và \(\Delta MAB\) có:

\(\widehat M\) chung

\(\widehat {MFE} = \widehat {MBA} = 90^\circ \)

Do đó, \(\Delta MEF\backsim\Delta MAB\) (g.g)

Vì  nên \(\frac{{MF}}{{MB}} = \frac{{FE}}{{AB}}\) (các cặp cạnh tương ứng)

Thay số, \(\frac{2}{{20}} = \frac{{1,65}}{{AB}} \Rightarrow AB = \frac{{1,65.20}}{2} = 16,5\)

Vậy tòa tháp cao 16,5m.


Cùng chủ đề:

Giải bài 3 trang 62 SGK Toán 8 – Chân trời sáng tạo
Giải bài 3 trang 65 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 3 trang 67 SGK Toán 8 – Chân trời sáng tạo
Giải bài 3 trang 70 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 3 trang 71 SGK Toán 8 – Chân trời sáng tạo
Giải bài 3 trang 76 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 3 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 3 trang 82 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 3 trang 84 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 3 trang 87 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 3 trang 88 SGK Toán 8 tập 1– Chân trời sáng tạo