Giải bài 3 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo
Cho hình bình hành
Đề bài
Cho hình bình hành \(ABCD\) . Gọi \(E\) là trung điểm của \(AD\) , \(F\) là trung điểm của \(BC\)
a) Chứng minh rằng tứ giác \(EBFD\) là hình bình hành
b) Gọi \(O\) là giao điểm của hai đường chéo của hình bình hành \(ABCD\) . Chứng minh rằng ba điểm \(E\) , \(O\) , \(F\) thẳng hàng.
Phương pháp giải - Xem chi tiết
Áp dụng dấu hiệu nhận biết của hình bình hành
Lời giải chi tiết
a) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AD = BC\) ; \(AD\) // \(BC\)
Mà \(E\) , \(F\) là trung điểm của \(AD\) , \(BC\) (gt)
Suy ra \(AE = ED = BF = FC\)
Xét tứ giác \(EBFD\) ta có:
\(ED = FB\) (cmt)
\(ED\) // \(BF\) (do \(AD\) // \(BC\) )
Suy ra \(EDFB\) là hình bình hành
b) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)
Mà \(DEBF\) là hình bình hành (gt)
Suy ra \(O\) cũng là trung điểm của \(EF\)
Suy ra \(E\) , \(O\) , \(F\) thẳng hàng