Giải bài 5. 24 trang 34 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài 17. Phương trình mặt cầu - SBT Toán 12 Kết nối tri


Giải bài 5.24 trang 34 sách bài tập toán 12 - Kết nối tri thức

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó. a) \({x^2} + {y^2} + {z^2} + 2x - 4z + 2 = 0\). b) \({x^2} + {y^2} + {z^2} - 2x + 2y + 2z + 7 = 0\). c) \(3{x^2} + 3{y^2} + 3{z^2} + 12x - 6y + 6z + 2 = 0\)

Đề bài

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.

a) \({x^2} + {y^2} + {z^2} + 2x - 4z + 2 = 0\).

b) \({x^2} + {y^2} + {z^2} - 2x + 2y + 2z + 7 = 0\).

c) \(3{x^2} + 3{y^2} + 3{z^2} + 12x - 6y + 6z + 2 = 0\)

Phương pháp giải - Xem chi tiết

Ý a: Xét dạng phương trình mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).

Nếu \({a^2} + {b^2} + {c^2} - d > 0\) phương trình là phương trình mặt cầu, có tâm \(\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Ý b: Xét dạng phương trình mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).

Nếu \({a^2} + {b^2} + {c^2} - d > 0\) phương trình là phương trình mặt cầu, có tâm \(\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Ý c: Xét dạng phương trình mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).

Nếu \({a^2} + {b^2} + {c^2} - d > 0\) phương trình là phương trình mặt cầu, có tâm \(\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Lời giải chi tiết

a) Trong không gian Oxyz, phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).

Xét phương trình \({x^2} + {y^2} + {z^2} + 2x - 4z + 2 = 0\), ta có \(a =  - 1,b = 0,c = 2,d = 2\).

Suy ra \({a^2} + {b^2} + {c^2} - d = 1 + 4 - 2 = 3 > 0\), do đó phương trình đã cho là phương trình mặt cầu.

Mặt cầu có tâm \(\left( { - 1;0;2} \right)\) và bán kính \(R = \sqrt 3 \).

b) Trong không gian Oxyz, phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).

Xét phương trình \({x^2} + {y^2} + {z^2} - 2x + 2y + 2z + 7 = 0\), ta có \(a = 1,b =  - 1,c =  - 1,d = 7\).

Suy ra \({a^2} + {b^2} + {c^2} - d = 1 + 1 + 1 - 7 =  - 4 < 0\), do đó phương trình đã cho không là phương trình mặt

cầu.

c) Trong không gian Oxyz, phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).

Xét phương trình \(3{x^2} + 3{y^2} + 3{z^2} + 12x - 6y + 6z + 2 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} + 4x - 2y + 2z + \frac{2}{3} = 0\).

Ta có \(a =  - 2,b = 1,c =  - 1,d = \frac{2}{3}\).

Suy ra \({a^2} + {b^2} + {c^2} - d = 4 + 1 + 1 - \frac{2}{3} = \frac{{16}}{3} > 0\), do đó phương trình đã cho là phương trình mặt cầu.

Mặt cầu có tâm \(\left( { - 2;1; - 1} \right)\) và bán kính \(R = \frac{4}{{\sqrt 3 }}\).


Cùng chủ đề:

Giải bài 5. 19 trang 32 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 20 trang 32 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 21 trang 34 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 22 trang 34 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 23 trang 34 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 24 trang 34 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 25 trang 34 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 26 trang 34 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 27 trang 35 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 28 trang 35 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 29 trang 35 sách bài tập toán 12 - Kết nối tri thức