Giải bài 5 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 3. Các số đặc trưng đo xu thế trung tâm của mẫu số


Giải bài 5 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạo

Bác Dũng và bác Thu ghi lại só điện thoại mà mỗi người gọi mỗi ngày trong 10 ngày được lựa chọn ngẫu nhiên từ tháng 01/2021 ở bảng sau:

Đề bài

Bác Dũng và bác Thu ghi lại só điện thoại mà mỗi người gọi mỗi ngày trong 10 ngày được lựa chọn ngẫu nhiên từ tháng 01/2021 ở bảng sau:

Bác Dũng

2

7

3

6

1

4

1

4

5

1

Bác Thu

1

3

1

2

3

4

1

2

20

2

a) Hãy tìm số trung bình, tứ phân vị và mốt của số điện thoại mà mỗi bác gọi theo số liệu trên

b) Nếu so sánh theo số trung bình thì ai có nhiều cuộc điện thoại hơn?

c) Nếu so sánh theo số trung vị thì ai có nhiều cuộc điện thoại hơn?

d) Theo bạn, nên dùng số trung bình hay số trung vị để so sánh xem ai có nhiều cuộc gọi điện thoại hơn mỗi ngày?

Phương pháp giải - Xem chi tiết

a) Cho bảng số liệu:

Giá trị

\({x_1}\)

\({x_2}\)

\({x_m}\)

Tần số

\({f_1}\)

\({f_2}\)

\({f_m}\)

+) Số trung bình: \(\overline x  = \frac{{{x_1}.{f_1} + {x_2}.{f_2} + ... + {x_m}.{f_m}}}{{{f_1} + {f_2} + ... + {f_m}}}\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, \(n = {f_1} + {f_2} + ... + {f_m}\)

Bước 2: \({Q_2}\) là trung vị của mẫu số liệu trên.

\({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

\({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

+) Mốt \({M_o}\) là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)

d) So sánh:

+) Nếu các số liệu không có một giá trị nào quá lớn hoặc quá nhỏ => so sánh số trung bình.

+) Nếu các số liệu có một giá trị quá lớn hoặc quá nhỏ => so sánh trung vị.

Lời giải chi tiết

a) Bác Dũng:

+) Số trung bình: \(\overline x  = \frac{{2 + 7 + 3 + 6 + 1 + 4 + 1 + 4 + 5 + 1}}{{10}} = 3,4\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, \(1,1,1,2,3,4,4,5,6,7\)

Bước 2: Vì \(n = 10\), là số chẵn nên \({Q_2} = \frac{1}{2}(3 + 4) = 3,5\)

\({Q_1}\) là trung vị của nửa số liệu:  \(1,1,1,2,3\) Do đó \({Q_1} = 1\)

\({Q_3}\) là trung vị của nửa số liệu \(4,4,5,6,7\) Do đó \({Q_3} = 5\)

+) Mốt \({M_o} = 1\)

Bác Thu

+) Số trung bình: \(\overline x  = \frac{{1 + 3 + 1 + 2 + 3 + 4 + 1 + 2 + 20 + 2}}{{10}} = 3,9\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, \(1,1,1,2,2,2,3,3,4,20\)

Bước 2: Vì \(n = 10\), là số chẵn nên \({Q_2} = \frac{1}{2}(2 + 2) = 2\)

\({Q_1}\) là trung vị của nửa số liệu:  \(1,1,1,2,2\) Do đó \({Q_1} = 1\)

\({Q_3}\) là trung vị của nửa số liệu \(2,3,3,4,20\) Do đó \({Q_3} = 3\)

+) Mốt \({M_o} = 1,{M_o} = 2\)

b) Do 3,9 > 3,4 nên theo số trung bình thì bác Thu có nhiều cuộc điện thoại hơn.

c) Do 3,5 > 2 nên theo số trung vị thì bác Dũng có nhiều cuộc điện thoại hơn.

d) Vì trong mẫu số liệu có một ngày bác Thu có tới 20 cuộc điện thoại, lớn hơn nhiều so với các ngày khác, do đó ta nên so sánh theo số trung vị.


Cùng chủ đề:

Giải bài 5 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 97 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 109 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 125 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 127 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 6 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 6 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 6 trang 18 SGK Toán 10 tập 2 – Chân trời sáng tạo