Giải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 5. Phương trình lượng giác cơ bản - SBT Toán 11 CTST


Giải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Tìm các nghiệm của mỗi phương trình sau trong khoảng \(\left( { - \pi ;\pi } \right)\). a) \(\sin \left( {3x - \frac{\pi }{3}} \right) = 1\);

Đề bài

Tìm các nghiệm của mỗi phương trình sau trong khoảng \(\left( { - \pi ;\pi } \right)\).

a) \(\sin \left( {3x - \frac{\pi }{3}} \right) = 1\);

b) \(2\cos \left( {2x - \frac{{3\pi }}{4}} \right) = \sqrt 3 \);

c) \(\tan \left( {x + \frac{\pi }{9}} \right) = \tan \frac{{4\pi }}{9}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải:

a) Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi  - \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha  = m\).

Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi  - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

b) Phương trình \(\cos x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x =  - \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ {0;\pi } \right]\) sao cho \(\cos \alpha  = m\).

Đặc biệt: \(\cos u = \cos v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u =  - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

c) Với mọi số thực m, phương trình \(\tan x = m\) có nghiệm \(x = \alpha  + k\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho \(\tan \alpha  = m\).

Lời giải chi tiết

a) \(\sin \left( {3x - \frac{\pi }{3}} \right) = 1 \) \( \Leftrightarrow 3x - \frac{\pi }{3} = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}\left( {k \in \mathbb{Z}} \right)\)

Vì \(x \in \left( { - \pi ;\pi } \right) \Rightarrow  - \pi  < \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3} < \pi  \) \( \Leftrightarrow \frac{{ - 23}}{{12}} < k < \frac{{13}}{{12}}\)

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0;1} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 7\pi }}{{18}};\frac{{5\pi }}{{18}};\frac{{17\pi }}{{18}}} \right\}\).

b) \(2\cos \left( {2x - \frac{{3\pi }}{4}} \right) = \sqrt 3  \) \( \Leftrightarrow \cos \left( {2x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2} \) \( \Leftrightarrow \cos \left( {2x - \frac{{3\pi }}{4}} \right) = \cos \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{{3\pi }}{4} = \frac{\pi }{6} + k2\pi \\2x - \frac{{3\pi }}{4} =  - \frac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{11\pi }}{{24}} + k\pi \\x = \frac{{7\pi }}{{24}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì \(x \in \left( { - \pi ;\pi } \right)\) nên:

TH1: \( - \pi  < \frac{{11\pi }}{{24}} + k\pi  < \pi  \) \( \Leftrightarrow \frac{{ - 35}}{{24}} < k < \frac{{13}}{{24}}\).

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 13\pi }}{{24}};\frac{{11\pi }}{{24}}} \right\}\).

TH2: \( - \pi  < \frac{{7\pi }}{{24}} + k\pi  < \pi  \) \( \Leftrightarrow \frac{{ - 31}}{{24}} < k < \frac{{17}}{{24}}\).

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 17\pi }}{{24}};\frac{{7\pi }}{{24}}} \right\}\).

Vậy \(x \in \left\{ {\frac{{ - 17\pi }}{{24}};\frac{{ - 13\pi }}{{24}};\frac{{7\pi }}{{24}};\frac{{11\pi }}{{24}}} \right\}\).

c) \(\tan \left( {x + \frac{\pi }{9}} \right) = \tan \frac{{4\pi }}{9} \) \( \Leftrightarrow x + \frac{\pi }{9} = \frac{{4\pi }}{9} + k\pi \left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow x = \frac{\pi }{3} + k\pi \left( {k \in \mathbb{Z}} \right)\).

Vì \(x \in \left( { - \pi ;\pi } \right) \Rightarrow  - \pi  < \frac{\pi }{3} + k\pi  < \pi  \) \( \Leftrightarrow \frac{{ - 4}}{3} < k < \frac{2}{3}\)

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 2\pi }}{3};\frac{\pi }{3}} \right\}\).


Cùng chủ đề:

Giải bài 5 trang 18 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2