Processing math: 100%

Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 2. Các quy tắc tính đạo hàm - SBT Toán 11 CTST


Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Tính đạo hàm cấp hai của các hàm số sau:

Đề bài

Tính đạo hàm cấp hai của các hàm số sau:

a) y=xsin2x;

b) y=cos2x;

c) y=x43x3+x21.

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về đạo hàm cấp hai của hàm số: Cho hàm số y=f(x) có đạo hàm tại mọi x(a;b) thì ta có hàm số y=f(x) xác định trên (a;b). Nếu hàm số y=f(x) lại có đạo hàm tại x thì ta gọi đạo hàm của y là đạo hàm cấp hai của hàm số y=f(x) tại x và kí hiệu là y hoặc f(x).

+ Sử dụng một số quy tắc tính đạo hàm:

a) (uv)=uv+uv, (sinu(x))=(u(x))cosu(x), x=1, (u+v)=u+v, (cosu(x))=(u(x))sinu(x)

b) {[u(x)]α}=α[u(x)]α1[u(x)];(cosx)=sinx, (sinu(x))=(u(x))cosu(x)

c) (u±v)=u±v, (xα)=α.xα1(x>0)

Lời giải chi tiết

a) y =(xsin2x) =xsin2x+x(sin2x) =sin2x+2xcos2x

y =(sin2x+2xcos2x) =2cos2x+2xcos2x+2x(cos2x)

=2cos2x+2cos2x4xsin2x =4cos2x4xsin2x

b) y =(cos2x) =2(cosx)cosx =2cosxsinx =sin2x

y =(sin2x) =2cos2x

c) y =(x43x3+x21) =4x39x2+2xy =(4x39x2+2x) =12x218x+2


Cùng chủ đề:

Giải bài 5 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 58 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 62 sách bài tập toán 11 - Chân trời sáng tạo tập 2