Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 2. Các quy tắc tính đạo hàm - SBT Toán 11 CTST


Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Tính đạo hàm cấp hai của các hàm số sau:

Đề bài

Tính đạo hàm cấp hai của các hàm số sau:

a) \(y = x\sin 2x\);

b) \(y = {\cos ^2}x\);

c) \(y = {x^4} - 3{x^3} + {x^2} - 1\).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về đạo hàm cấp hai của hàm số: Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại mọi \(x \in \left( {a;b} \right)\) thì ta có hàm số \(y' = f'\left( x \right)\) xác định trên \(\left( {a;b} \right)\). Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x và kí hiệu là \(y''\) hoặc \(f''\left( x \right)\).

+ Sử dụng một số quy tắc tính đạo hàm:

a) \(\left( {uv} \right)' = u'v + uv'\), \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\), \(x' = 1\), \(\left( {u + v} \right)' = u' + v'\), \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)

b) \(\left\{ {{{\left[ {u\left( x \right)} \right]}^\alpha }} \right\}' = \alpha {\left[ {u\left( x \right)} \right]^{\alpha - 1}}\left[ {u\left( x \right)} \right]';\left( {\cos x} \right)' = - \sin x\), \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\)

c) \(\left( {u \pm v} \right)' = u' \pm v'\), \(\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right)\)

Lời giải chi tiết

a) \(y' \) \( = \left( {x\sin 2x} \right)' \) \( = x'\sin 2x + x\left( {\sin 2x} \right)' \) \( = \sin 2x + 2x\cos 2x\)

\( \Rightarrow y'' \) \( = \left( {\sin 2x + 2x\cos 2x} \right)' \) \( = 2\cos 2x + 2x'\cos 2x + 2x\left( {\cos 2x} \right)'\)

\( \) \( = 2\cos 2x + 2\cos 2x - 4x\sin 2x \) \( = 4\cos 2x - 4x\sin 2x\)

b) \(y' \) \( = \left( {{{\cos }^2}x} \right)' \) \( = 2\left( {\cos x} \right)'\cos x \) \( = - 2\cos x\sin x \) \( = - \sin 2x\)

\( \Rightarrow y'' \) \( = \left( { - \sin 2x} \right)' \) \( = - 2\cos 2x\)

c) \(y' \) \( = \left( {{x^4} - 3{x^3} + {x^2} - 1} \right)' \) \( = 4{x^3} - 9{x^2} + 2x\)\( \Rightarrow y'' \) \( = \left( {4{x^3} - 9{x^2} + 2x} \right)' \) \( = 12{x^2} - 18x + 2\)


Cùng chủ đề:

Giải bài 5 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 58 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 62 sách bài tập toán 11 - Chân trời sáng tạo tập 2