Giải bài 5 trang 33 vở thực hành Toán 9 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài 4. Phương trình quy về phương trình bậc nhất một ẩn


Giải bài 5 trang 33 vở thực hành Toán 9

Hai người cùng làm chung một công việc thì xong trong 8 giờ. Hai người cùng làm được 4 giờ thì người thứ nhất bị điều đi làm công việc khác. Người thứ hai tiếp tục làm việc trong 12 giờ nữa thì xong công việc. Gọi x là thời gian người thứ nhất làm một mình xong công việc (đơn vị tính theo giờ, (x > 0)). a) Hãy biểu thị theo x: - Khối lượng công việc mà người thứ nhất làm được trong 1 giờ; - Khối lượng công việc mà người thứ hai làm được trong 1 giờ; b) Hãy lập phương trình theo x và giải p

Đề bài

Hai người cùng làm chung một công việc thì xong trong 8 giờ. Hai người cùng làm được 4 giờ thì người thứ nhất bị điều đi làm công việc khác. Người thứ hai tiếp tục làm việc trong 12 giờ nữa thì xong công việc. Gọi x là thời gian người thứ nhất làm một mình xong công việc (đơn vị tính theo giờ, \(x > 0\)).

a) Hãy biểu thị theo x:

- Khối lượng công việc mà người thứ nhất làm được trong 1 giờ;

- Khối lượng công việc mà người thứ hai làm được trong 1 giờ;

b) Hãy lập phương trình theo x và giải phương trình đó. Sau đó cho biết, nếu làm một mình thì mỗi người phải làm trong bao lâu mới xong công việc đó.

Phương pháp giải - Xem chi tiết

a) Khối lượng công việc mà người thứ nhất làm được trong 1 giờ là: \(\frac{1}{x}\) (công việc).

Trong 1 giờ khối lượng công việc mà người thứ hai làm là: \(\frac{1}{8} - \frac{1}{x}\) (công việc).

b) Dựa theo dữ kiện bài toán đầu bài cho, ta lập được phương trình chứa ẩn x, từ đó giải phương trình tìm x và đưa ra kết luận.

Lời giải chi tiết

a) Khối lượng công việc mà người thứ nhất làm được trong 1 giờ là: \(\frac{1}{x}\) (công việc).

Vì hai người làm chung thì xong công việc trong 8 giờ, nên trong một giờ cả hai người làm được \(\frac{1}{8}\) (công việc). Do đó, trong 1 giờ khối lượng công việc mà người thứ hai làm là: \(\frac{1}{8} - \frac{1}{x}\) (công việc).

b) Sau 4 giờ, khối lượng công việc mà hai người cùng làm được là: \(4.\frac{1}{8} = \frac{1}{2}\) (công việc)

Khối lượng công việc mà người thứ hai phải làm nốt là: \(1 - \frac{1}{2} = \frac{1}{2}\) (công việc)

Khối lượng công việc người thứ hai làm được trong 12 giờ là: \(12\left( {\frac{1}{8} - \frac{1}{x}} \right)\) (công việc)

Vì sau 12 giờ thì công việc được hoàn thành nên ta có phương trình: \(12\left( {\frac{1}{8} - \frac{1}{x}} \right) = \frac{1}{2}\)

Giải phương trình trên ta được \(x = 12\).

Vậy nếu làm riêng, người thứ nhất hoàn thành công việc trong 12 giờ, người thứ hai hoàn thành công việc trong 24 giờ.


Cùng chủ đề:

Giải bài 5 trang 22 vở thực hành Toán 9
Giải bài 5 trang 23 vở thực hành Toán 9 tập 2
Giải bài 5 trang 24 vở thực hành Toán 9
Giải bài 5 trang 27, 28 vở thực hành Toán 9 tập 2
Giải bài 5 trang 31 vở thực hành Toán 9 tập 2
Giải bài 5 trang 33 vở thực hành Toán 9
Giải bài 5 trang 36 vở thực hành Toán 9 tập 2
Giải bài 5 trang 37 vở thực hành Toán 9
Giải bài 5 trang 40 vở thực hành Toán 9
Giải bài 5 trang 42 vở thực hành Toán 9
Giải bài 5 trang 42 vở thực hành Toán 9 tập 2