Giải bài 6.22 trang 47 sách bài tập toán 12 - Kết nối tri thức
Có 3 hộp, mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau: A: “Tổng số ghi trên các tấm thẻ là 6”; B: “Ba tấm thẻ có số ghi bằng nhau”. Tính \(P\left( {A|B} \right),P\left( {B|A} \right)\)
Đề bài
Có 3 hộp, mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau:
A: “Tổng số ghi trên các tấm thẻ là 6”;
B: “Ba tấm thẻ có số ghi bằng nhau”.
Tính \(P\left( {A|B} \right),P\left( {B|A} \right)\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính xác suất có điều kiện.
Lời giải chi tiết
Ta có \(\Omega = \left\{ {\left( {a,b,c} \right);1 \le a,b,c \le 3} \right\}\) suy ra \(n\left( \Omega \right) = 27\).
\(A = \left\{ {\left( {1,2,3} \right);\left( {2,1,3} \right);\left( {3,1,2} \right);\left( {1,3,2} \right);\left( {3,2,1} \right);\left( {2,3,1} \right);\left( {2,2,2} \right)} \right\};n\left( A \right) = 7\) suy ra \(P\left( A \right) = \frac{7}{{27}}\).
\(B = \left\{ {\left( {1,1,1} \right);\left( {2,2,2} \right);\left( {3,3,3} \right)} \right\};n\left( B \right) = 3\) suy ra \(P\left( B \right) = \frac{3}{{27}}\).
\(A \cap B = \left\{ {\left( {2.2.2} \right)} \right\}\) suy ra \(P\left( {AB} \right) = \frac{1}{{27}}\)
Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{3}\); \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{1}{7}\)