Giải bài 9 trang 49 sách bài tập toán 12 - Kết nối tri thức
Cho (intlimits_0^4 {fleft( x right)dx} = 5) và (intlimits_0^4 {gleft( x right)dx} = 6). Giá trị của (intlimits_0^4 {left[ {fleft( x right) + 2gleft( x right)} right]dx} ) là A. 17. B. 16. C. 11 . D. 22.
Đề bài
Cho \(\int\limits_0^4 {f\left( x \right)dx} = 5\) và \(\int\limits_0^4 {g\left( x \right)dx} = 6\). Giá trị của \(\int\limits_0^4 {\left[ {f\left( x \right) + 2g\left( x \right)} \right]dx} \) là
A. 17.
B. 16.
C. 11.
D. 22.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất cơ bản của tích phân.
Lời giải chi tiết
Ta có \(\int\limits_0^4 {\left[ {f\left( x \right) + 2g\left( x \right)} \right]dx} = \int\limits_0^4 {f\left( x \right)dx + 2} \int\limits_0^4 {g\left( x \right)dx} = 5 + 2 \cdot 6 = 17\).
Đáp án A.
Cùng chủ đề:
Giải bài 9 trang 49 sách bài tập toán 12 - Kết nối tri thức