Giải bài 13 trang 50 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài tập ôn tập cuối năm - SBT Toán 12 Kết nối tri thức


Giải bài 13 trang 50 sách bài tập toán 12 - Kết nối tri thức

Cho hình hộp (ABCD.A'B'C'D'), gọi (G) là trọng tâm của tam giác (ADA') và (M) là trung điểm của đoạn thẳng (CC'). Hệ thức biểu diễn (overrightarrow {GM} ) theo ba vectơ (overrightarrow {AB} ,{rm{ }}overrightarrow {AD} ,{rm{ }}overrightarrow {AA'} ) là A. (overrightarrow {AB} + frac{1}{2}overrightarrow {AD} + frac{1}{3}overrightarrow {AA'} ). B. (overrightarrow {AB} + frac{2}{3}overrightarrow {AD} + frac{1}{3}overrightarrow {AA'} ).

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\), gọi \(G\) là trọng tâm của tam giác \(ADA'\) và \(M\) là trung điểm của đoạn thẳng \(CC'\). Hệ thức biểu diễn \(\overrightarrow {GM} \) theo ba vectơ \(\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AD} ,{\rm{ }}\overrightarrow {AA'} \) là

A. \(\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD}  + \frac{1}{3}\overrightarrow {AA'} \).

B. \(\overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AD}  + \frac{1}{3}\overrightarrow {AA'} \).

C. \(\overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AD}  + \frac{1}{6}\overrightarrow {AA'} \).

D. \(\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AD}  + \frac{1}{6}\overrightarrow {AA'} \).

Phương pháp giải - Xem chi tiết

Từ \(\overrightarrow {GM} \) biến đổi thành tổng các vectơ. Sử dụng tính chất trọng tâm, quy tắc hình bình hành, tính chất song song có trong hình hộp để biến đổi sao cho các vectơ \(\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AD} ,{\rm{ }}\overrightarrow {AA'} \) xuất hiện.

Lời giải chi tiết

Ta có \(\overrightarrow {GM}  = \overrightarrow {GA}  + \overrightarrow {AC}  + \overrightarrow {CM}  = \frac{{ - 1}}{3}\overrightarrow {AD'}  + \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \frac{1}{2}\overrightarrow {CC'} \)

\( = \frac{{ - 1}}{3}\left( {\overrightarrow {AD}  + \overrightarrow {AA'} } \right) + \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \frac{1}{2}\overrightarrow {AA'}  = \overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AD}  + \frac{1}{6}\overrightarrow {AA'} \).

Đáp án C.


Cùng chủ đề:

Giải bài 8 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 9 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 10 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 11 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 12 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 13 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 14 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 15 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 16 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 17 trang 51 sách bài tập toán 12 - Kết nối tri thức
Giải bài 18 trang 51 sách bài tập toán 12 - Kết nối tri thức