Giải bài 12 trang 50 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài tập ôn tập cuối năm - SBT Toán 12 Kết nối tri thức


Giải bài 12 trang 50 sách bài tập toán 12 - Kết nối tri thức

Cho hình chóp (S.ABC) có (SA) vuông góc với mặt phẳng (left( {ABC} right)) và tam giác (ABC) vuông cân tại (B), biết (SA = AB = BC = a). Gọi (M) là trung điểm của cạnh (AC). Tích vô hướng (overrightarrow {SM} cdot overrightarrow {BC} )bằng A. (frac{{{a^2}}}{2}). B. ({a^2}). C. ( - {a^2}). D. ( - frac{{{a^2}}}{2}).

Đề bài

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AB = BC = a\). Gọi \(M\) là trung điểm của cạnh \(AC\). Tích vô hướng \(\overrightarrow {SM}  \cdot \overrightarrow {BC} \)bằng

A. \(\frac{{{a^2}}}{2}\).

B. \({a^2}\).

C. \( - {a^2}\).

D. \( - \frac{{{a^2}}}{2}\).

Phương pháp giải - Xem chi tiết

Tách cách vectơ thành tổng hai vectơ để xuất hiện hai vectơ vuông góc khi tính tích \(\overrightarrow {SM}  \cdot \overrightarrow {BC} \). Áp dụng công thức tính vô hướng theo tích độ dài và cosin góc xen giữa.

Lời giải chi tiết

Ta có \(\overrightarrow {SM}  \cdot \overrightarrow {BC}  = \left( {\overrightarrow {SA}  + \overrightarrow {AM} } \right) \cdot \overrightarrow {BC}  = \overrightarrow {SA}  \cdot \overrightarrow {BC}  + \overrightarrow {AM}  \cdot \overrightarrow {BC}  = \overrightarrow {AM}  \cdot \overrightarrow {BC} \) do \(\overrightarrow {SA}  \bot \overrightarrow {BC} \).

Có \(AC = \sqrt {B{A^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \) suy ra \(AM = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\); \(\left( {\overrightarrow {AM} ,\overrightarrow {BC} } \right) = {45^ \circ }\) do tam giác \(ABC\) vuông cân tại \(B\).

Do đó \(\overrightarrow {AM}  \cdot \overrightarrow {BC}  = AM \cdot BC \cdot \cos {45^ \circ } = \frac{{a\sqrt 2 }}{2} \cdot a \cdot \frac{1}{{\sqrt 2 }} = \frac{{{a^2}}}{2}\).

Đáp án A.


Cùng chủ đề:

Giải bài 7 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 8 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 9 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 10 trang 49 sách bài tập toán 12 - Kết nối tri thức
Giải bài 11 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 12 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 13 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 14 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 15 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 16 trang 50 sách bài tập toán 12 - Kết nối tri thức
Giải bài 17 trang 51 sách bài tập toán 12 - Kết nối tri thức