Giải bài 6 trang 33 Chuyên đề học tập Toán 11 Cánh diều — Không quảng cáo

Giải chuyên đề học tập Toán lớp 11 Cánh diều Bài 2. Phép đồng dạng Chuyên đề học tập Toán 11 Cánh diều


Giải bài 6 trang 33 Chuyên đề học tập Toán 11 Cánh diều

Chứng minh rằng qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.

Đề bài

Chứng minh rằng qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.

Phương pháp giải - Xem chi tiết

Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)

Lời giải chi tiết

Theo định lí về tính chất của phép vị tự ta có: Phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

Giả sử qua phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng d thành đường thẳng d' thì d // d' hoặc d ≡ d'.

Mà O cố định, O thuộc đường thẳng d (giả thiết) và phép vi tự tâm O tỉ số k (k ≠ 0) biến điểm O thành chính nó nên O cũng thuộc đường thẳng d'. Do đó, d và d' không thể song song với nhau nên d và d' trùng nhau.

Như vậy, phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng d thành đường thẳng trùng với chính nó.

Nói cách khác: Qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.


Cùng chủ đề:

Giải bài 5 trang 24 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 5 trang 33 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 5 trang 43 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 5 trang 49 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 6 trang 24 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 6 trang 33 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 7 trang 24 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 7 trang 33 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 8 trang 24 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 8 trang 33 Chuyên đề học tập Toán 11 Cánh diều
Giải bài 9 trang 24 Chuyên đề học tập Toán 11 Cánh diều