Giải bài 62 trang 50 sách bài tập toán 11 - Cánh diều — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Cánh diều Bài 4. Phương trình, bất phương trình mũ và lôgarit - S


Giải bài 62 trang 50 sách bài tập toán 11 - Cánh diều

Giải mỗi phương trình sau:

Đề bài

Giải mỗi phương trình sau:

a) \({\log _4}\left( {x - 4} \right) =  - 2;\)

b) \({\log _3}\left( {{x^2} + 2x} \right) = 1;\)

c) \({\log _{25}}\left( {{x^2} - 4} \right) = \frac{1}{2};\)

d) \({\log _9}\left[ {{{\left( {2x - 1} \right)}^2}} \right] = 2;\)

e) \(\log \left( {{x^2} - 2x} \right) = \log \left( {2x - 3} \right);\)

g) \({\log _2}{x^2} + {\log _{\frac{1}{2}}}\left( {2x + 8} \right) = 0.\)

Phương pháp giải - Xem chi tiết

- Tìm điều kiện cho phương trình.

- Giải phương trình bằng định nghĩa hàm số lôgarit hoặc đưa về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.

Lời giải chi tiết

a) Điều kiện: \(x > 4.\)

\({\log _4}\left( {x - 4} \right) =  - 2 \Leftrightarrow x - 4 = {4^{ - 2}} \Leftrightarrow x = \frac{{65}}{{16}}\) (thỏa mãn).

b) Điều kiện: \({x^2} + 2x > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x <  - 2\end{array} \right.\)

\({\log _3}\left( {{x^2} + 2x} \right) = 1 \Leftrightarrow {x^2} + 2x = 3 \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 3\end{array}  \right)\) (thỏa mãn)

c) Điều kiện: \({x^2} - 4 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x <  - 2\end{array} \right.\)

\({\log _{25}}\left( {{x^2} - 4} \right) = \frac{1}{2} \Leftrightarrow {x^2} - 4 = {25^{\frac{1}{2}}} \Leftrightarrow {x^2} - 4 = 5 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x =  - 3\end{array}  \right)\) (thỏa mãn)

d) Điều kiện: \({\left( {2x - 1} \right)^2} > 0 \Leftrightarrow x \ne \frac{1}{2}.\)

\({\log _9}\left[ {{{\left( {2x - 1} \right)}^2}} \right] = 2 \Leftrightarrow {\left( {2x - 1} \right)^2} = {9^2} \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 9\\2x - 1 =  - 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x =  - 4\end{array}  \right)\) (thỏa mãn)

e) \(\log \left( {{x^2} - 2x} \right) = \log \left( {2x - 3} \right) \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 2x = 2x - 3\\2x - 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 4x + 3 = 0\\x > \frac{3}{2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\\x > \frac{3}{2}\end{array} \right. \Leftrightarrow x = 3.\)

g) Điều kiện: \(\left\{ \begin{array}{l}{x^2} > 0\\2x + 8 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 4\\x \ne 0\end{array} \right..\)

\(\begin{array}{l}{\log _2}{x^2} + {\log _{\frac{1}{2}}}\left( {2x + 8} \right) = 0 \Leftrightarrow {\log _2}{x^2} - {\log _2}\left( {2x + 8} \right) = 0 \Leftrightarrow {\log _2}\frac{{{x^2}}}{{2x + 8}} = 0\\ \Leftrightarrow \frac{{{x^2}}}{{2x + 8}} = 1 \Leftrightarrow {x^2} = 2x + 8 \Leftrightarrow {x^2} - 2x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - 2\end{array} \right.\left( {TM} \right).\end{array}\)


Cùng chủ đề:

Giải bài 61 trang 31 sách bài tập toán 11 - Cánh diều
Giải bài 61 trang 50 sách bài tập toán 11 - Cánh diều
Giải bài 61 trang 118 sách bài tập toán 11 - Cánh diều
Giải bài 61 trang 119 sách bài tập toán 11 - Cánh diều
Giải bài 62 trang 31 sách bài tập toán 11 - Cánh diều
Giải bài 62 trang 50 sách bài tập toán 11 - Cánh diều
Giải bài 62 trang 118, 119 sách bài tập toán 11 - Cánh diều
Giải bài 63 trang 31 sách bài tập toán 11 - Cánh diều
Giải bài 63 trang 51 sách bài tập toán 11 - Cánh diều
Giải bài 64 trang 31 sách bài tập toán 11 - Cánh diều
Giải bài 64 trang 51 sách bài tập toán 11 - Cánh diều