Giải bài 66 trang 106 SBT toán 10 - Cánh diều — Không quảng cáo

SBT Toán 10 - Giải SBT Toán 10 - Cánh diều Bài 6. Tích vô hướng của hai vectơ - SBT Toán 10 CD


Giải bài 66 trang 106 SBT toán 10 - Cánh diều

Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ 650 km/h thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ 35 km/h.

Đề bài

Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ 650 km/h thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ 35 km/h. Máy bay bị thay đổi vận tốc sau khi gặp gió thổi. Tìm tốc độ mới của máy bay (làm tròn kết quả đến hàng phần mười theo đơn vị km/h).

Phương pháp giải - Xem chi tiết

Bước 1: Đặt \(\overrightarrow {{v_0}} \) là vận tốc của máy bay khi không có gió, tính độ dài vectơ \(\overrightarrow {{v_0}} \); \(\overrightarrow {{v_1}} \) là vận tốc của gió, tính độ dài vectơ \(\overrightarrow {{v_1}} \); \(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi có gió

Bước 2: Tìm mối liên hệ giữa \(\overrightarrow {{v_0}} \); \(\overrightarrow {{v_1}} \); \(\overrightarrow {{v_2}} \)

Bước 3: Sử dụng các quy tắc vectơ và tích vô hướng của hai vectơ để tính độ dài vectơ \(\overrightarrow {{v_2}} \)

Lời giải chi tiết

Gọi \(\overrightarrow {{v_0}} \) là vận tốc của máy bay khi không có gió \( \Rightarrow \left| {\overrightarrow {{v_0}} } \right| = 650\) (km/h)

\(\overrightarrow {{v_1}} \) là vận tốc của gió \( \Rightarrow \left| {\overrightarrow {{v_1}} } \right| = 35\) (km/h)

\(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi có gió

Theo giả thiết, \(\overrightarrow {{v_2}}  = \overrightarrow {{v_0}}  + \overrightarrow {{v_1}} \) \( \Rightarrow {\left| {\overrightarrow {{v_2}} } \right|^2} = {\overrightarrow {{v_2}} ^2} = {\left( {\overrightarrow {{v_0}}  + \overrightarrow {{v_1}} } \right)^2}\)\( = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\overrightarrow {{v_0}} .\overrightarrow {{v_1}} \)

\( = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right|.\left| {\overrightarrow {{v_1}} } \right|.\cos \left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right)\)

Mà \(\left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = {45^0}\) nên \({\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right|.\left| {\overrightarrow {{v_1}} } \right|.\cos \left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = {650^2} + {35^2} + 2.650.35.\cos {45^0}\)\( \approx 455898,36\)

\( \Rightarrow \left| {\overrightarrow {{v_2}} } \right| \approx 675,2\) (km/h)

Vậy tốc độ mới của máy bay là 675,2 km/h


Cùng chủ đề:

Giải bài 64 trang 97 SBT toán 10 - Cánh diều
Giải bài 64 trang 106 SBT toán 10 - Cánh diều
Giải bài 65 trang 97 SBT toán 10 - Cánh diều
Giải bài 65 trang 106 SBT toán 10 - Cánh diều
Giải bài 66 trang 97 SBT toán 10 - Cánh diều
Giải bài 66 trang 106 SBT toán 10 - Cánh diều
Giải bài 67 trang 97 SBT toán 10 - Cánh diều
Giải bài 67 trang 106 SBT toán 10 - Cánh diều
Giải bài 68 trang 97 SBT toán 10 - Cánh diều
Giải bài 68 trang 106 SBT toán 10 - Cánh diều
Giải bài 69 trang 97 SBT toán 10 - Cánh diều