Giải bài 7.22 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính côsin góc giữa hai mặt phẳng sau
Đề bài
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính côsin góc giữa hai mặt phẳng sau:
a) Mặt phẳng (SAB) và mặt phẳng (ABCD);
b) Mặt phẳng (SAB) và mặt phẳng (SBC).
Phương pháp giải - Xem chi tiết
Để tính góc giữa hai mặt phẳng (α) và (β) ta có thể thực hiện cách sau:
Tìm hai đường thẳng a,b lần lượt vuông góc với hai mặt phẳng (α) và (β).
Khi đó góc giữa hai đường thẳng a,b chính là góc giữa hai mặt phẳng (α) và (β).
{a⊥(α)b⊥(β)⇒^((α),(β))=^(a,b).
Dựa vào tỉ số lượng giác trong tam giác vuông để tìm góc
Áp dụng định lí côsin trong tam giác
Lời giải chi tiết
a) Gọi O là giao điểm của AC và BD.
Khi đó SO⊥(ABCD) nên SO⊥AB,
Kẻ OH⊥AB tại H thì AB⊥(SOH), suy ra AB⊥SH.
Do đó, góc giữa hai mặt phằng (SAB) và (ABCD) bằng góc giữa hai đường thẳng SH vả HO, mà (SH,HO)=^SHO nên góc giữa hai mặt phẳng (SAB) và (ABCD) bằng ^SHO.
Ta tính được OH=a2,SH=a√32, suy ra cos^SHO=OHSH=√33.
b) Gọi K là trung điểm của SB. Khi đó AK⊥SB,CK⊥SB, suy ra góc giữa hai mặt phẳng (SAB) và (SBC) bằng góc giữa hai đường thẳng AK và CK.
Ta có AK=CK=a√32,AC=a√2.
Áp dụng định lí côsin trong tam giác ACK, ta có:
cos^AKC=AK2+CK2−AC22⋅AK⋅CK=−13, suy ra cos(AK,CK)=−cos^AKC=13.
Vậy côsin góc giữa hai mặt phả̉ng (SAB) và (SBC) bằng 13.