Giải bài 7.34 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Cho khối chóp đều (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng (a)
Đề bài
Cho khối chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a\), góc giữa mặt phẳng \(\left( {SCD} \right)\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính thể tích khối chóp: \(S = \frac{1}{3}Bh\).
Trong đó: \(B\) là diện tích đa giác đáy
\(h\)là đường cao của hình chóp
Bước 1: Xác định chiều cao \(SO\)
Bước 2: Tính diện tích đáy
Bước 3: Tính thể tích khối chóp \(V = \frac{1}{3}SO.{S_{ABCD}}\).
Lời giải chi tiết
Gọi \(O\) là giao điểm của \(AC\) và \(BD\), ta có \(SO\) vuông góc với mặt đáy \(\left( {ABCD} \right)\). Kẻ \(OM\) vuông góc với \(CD\) tại \(M\) thì \(SM\) cũng vuông góc với \(CD\) nên góc giữa hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng góc giữa hai đường thẳng \(SM\) và \(OM\), mà \(\left( {SM,OM} \right) = \widehat {SMO} = 60^\circ \). Ta có: \(OM = \frac{a}{2};\)\(SO = OM \cdot {\rm{tan}}\widehat {SMO} = \frac{{a\sqrt 3 }}{2}\). Vậy \({V_{S.ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{1}{3} \cdot {a^2} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{{6}}\).