Giải bài 7 trang 66 SGK Toán 10 tập 2 – Cánh diều — Không quảng cáo

Toán 10, giải toán lớp 10 cánh diều Bài 1. Tọa độ của vecto Toán 10 Cánh diều


Giải bài 7 trang 66 SGK Toán 10 tập 2 – Cánh diều

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1;- 2), N(4;- 1) và P(6 ; 2) lần lượt là trung điểm của các cạnh BC, CA, AB. Tìm toạ độ của các điểm A, B, C.

Đề bài

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1;- 2), N(4;- 1) và P(6 ; 2) lần lượt là trung điểm của các cạnh BC, CA, AB. Tìm toạ độ của các điểm A, B, C.

Phương pháp giải - Xem chi tiết

Đường trung bình song song và bằng một phần hai cạnh đáy tương ứng

Với \(\overrightarrow a  = \left( {{x_1};{y_1}} \right)\) và \(\overrightarrow b  = \left( {{x_2},{y_2}} \right)\) , ta có: \(\overrightarrow a  = \overrightarrow b  \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\end{array} \right.\)

Lời giải chi tiết

Theo tính chất đường trung bình trong một tam giác ta có: \(\overrightarrow {PN}  = \overrightarrow {BM}  = \overrightarrow {MC} \) và \(\overrightarrow {MP}  = \overrightarrow {NA} \)

Gọi \(A\left( {{a_1},{a_2}} \right),B\left( {{b_1};{b_2}} \right),C\left( {{c_1};{c_2}} \right)\)

Ta có: \(\overrightarrow {PN}  = \left( {2;3} \right)\),\(\overrightarrow {BM}  = \left( {1 - {b_1}; - 2 - {b_2}} \right)\), \(\overrightarrow {MC}  = \left( {{c_1} - 1;{c_2} + 2} \right)\), \(\overrightarrow {MP}  = \left( {5;4} \right)\), \(\overrightarrow {NA}  = \left( {{a_1} - 4;{a_2} + 1} \right)\)

Có \(\overrightarrow {PN}  = \overrightarrow {BM}  \Leftrightarrow \left\{ \begin{array}{l}2 = 1 - {b_1}\\3 =  - 2 - {b_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b_1} =  - 1\\{b_2} =  - 5\end{array} \right.\) .Vậy \(B\left( { - 1; - 5} \right)\)

Có \(\overrightarrow {PN}  = \overrightarrow {MC}  \Leftrightarrow \left\{ \begin{array}{l}2 = {c_1} - 1\\3 = {c_2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{c_1} = 3\\{c_2} = 1\end{array} \right.\) .Vậy \(C\left( {3;1} \right)\)

Có \(\overrightarrow {NA}  = \overrightarrow {MP}  \Leftrightarrow \left\{ \begin{array}{l}5 = {a_1} - 4\\4 = {a_2} + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a_1} = 9\\{a_2} = 3\end{array} \right.\) .Vậy \(A\left( {9;3} \right)\)


Cùng chủ đề:

Giải bài 7 trang 19 SGK Toán 10 tập 1 – Cánh diều
Giải bài 7 trang 20 SGK Toán 10 tập 2 – Cánh diều
Giải bài 7 trang 38 SGK Toán 10 tập 1 – Cánh diều
Giải bài 7 trang 54 SGK Toán 10 tập 2 – Cánh diều
Giải bài 7 trang 61 SGK Toán 10 tập 1 – Cánh diều
Giải bài 7 trang 66 SGK Toán 10 tập 2 – Cánh diều
Giải bài 7 trang 71 SGK Toán 10 tập 1 – Cánh diều
Giải bài 7 trang 72 SGK Toán 10 tập 2 – Cánh diều
Giải bài 7 trang 77 SGK Toán 10 tập 1 – Cánh diều
Giải bài 7 trang 86 SGK Toán 10 tập 2 – Cánh diều
Giải bài 7 trang 87 SGK Toán 10 tập 1 – Cánh diều