Giải bài 8 trang 105 vở thực hành Toán 8 tập 2 — Không quảng cáo

Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT Bài tập cuối chương IX trang 104, 105, 106 Vở thực hành


Giải bài 8 trang 105 vở thực hành Toán 8 tập 2

Cho tam giác ABC vuông tại A và các điểm D, E, F như Hình 9.77 sao cho AD là phân giác của góc BAC, DE và DF lần lượt vuông góc với AC và BC . Chứng minh rằng:

Đề bài

Cho tam giác ABC vuông tại A và các điểm D, E, F như Hình 9.77 sao cho AD là phân giác của góc BAC, DE và DF lần lượt vuông góc với AC và BC . Chứng minh rằng:

a) \(\frac{B\text{D}}{BC}=\frac{AB}{AB+AC}\), từ đó suy ra \(A\text{E}=\frac{AB.AC}{AB+AC}\)

b) ΔDFC ΔABC

c) DF=DB

Phương pháp giải - Xem chi tiết

Sử dụng các tam giác đồng dạng để chứng minh

Lời giải chi tiết

a) Hai tam giác vuông HDA (vuông tại D) và AHC (vuông tại H) có: $\widehat{DAH}={{90}^{0}}-\widehat{ACB}=\widehat{HCA}$.

Do đó $\Delta HDA\backsim \Delta AHC$ (cặp góc nhọn).

b) Áp dụng định lí Pythagore cho tam giác ABC vuông tại đỉnh A, ta có:

$B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}=41$, hay $BC=\sqrt{41}$ cm.

Mặt khác, trong tam giác vuông ABC với đường cao AH, ta có:

+) $AH.BC=2{{S}_{ABC}}=AB.AC$.

Do đó $AH=\frac{AB.AC}{BC}=\frac{20}{\sqrt{41}}$ (cm).

+) $A{{B}^{2}}=BH.BC$. Do đó $BH=\frac{A{{B}^{2}}}{BC}=\frac{25}{\sqrt{41}}$ (cm).

+) $A{{C}^{2}}=CH.BC$. Do đó $CH=\frac{A{{C}^{2}}}{BC}=\frac{16}{\sqrt{41}}$ (cm).

+ $HD=\frac{BH.AC}{BC}=\frac{\frac{25}{\sqrt{41}}.4}{\sqrt{41}}=\frac{100}{41}$ (cm).


Cùng chủ đề:

Giải bài 8 trang 90 vở thực hành Toán 8
Giải bài 8 trang 92 vở thực hành Toán 8 tập 2
Giải bài 8 trang 95 vở thực hành Toán 8 tập 2
Giải bài 8 trang 99 vở thực hành Toán 8 tập 2
Giải bài 8 trang 100 vở thực hành Toán 8
Giải bài 8 trang 105 vở thực hành Toán 8 tập 2
Giải bài 8 trang 119 vở thực hành Toán 8 tập 2
Giải bài 8 trang 125 vở thực hành Toán 8 tập 2
Giải bài 9 trang 11 vở thực hành Toán 8 tập 2
Giải bài 9 trang 25 vở thực hành Toán 8
Giải bài 9 trang 29 vở thực hành Toán 8