Giải bài tập 1. 20 trang 24 SGK Toán 9 tập 1 - Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Giải bài tập 1.20 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

Giải các phương trình sau bằng cách đưa về dạng tích: a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\). b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\). c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\). d) \(9{x^2} - 6x + 1 = {x^2}\).

Đề bài

Giải các phương trình sau bằng cách đưa về dạng tích:

a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\).

b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\).

c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\).

d) \(9{x^2} - 6x + 1 = {x^2}\).

Phương pháp giải - Xem chi tiết

+ Chuyển về phương trình tích;

+ Giải phương trình theo phương pháp giải phương trình tích;

+ Kết luận nghiệm.

Lời giải chi tiết

a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\)

\(\begin{array}{l}x\left( {2x - 10} \right) - 4x\left( {x - 6} \right) = 0\\x\left[ {2x - 10 - 4\left( {x - 6} \right)} \right] = 0\\x\left( {2x - 10 - 4x + 24} \right) = 0\\x\left( { - 2x + 14} \right) = 0.\end{array}\)

Phương trình \(x = 0\) có nghiệm duy nhất \(x = 0\).

Phương trình \( - 2x + 14 = 0\) có nghiệm duy nhất \(x = 7\).

Vậy phương trình \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\) có hai nghiệm \(x = 0\) và \(x = 7\).

b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\)

\(\begin{array}{l}4\left( {x + 3} \right) - \left( {x + 3} \right)\left( {7 - 5x} \right) = 0\\\left( {x + 3} \right)\left[ {4 - \left( {7 - 5x} \right)} \right] = 0\\\left( {x + 3} \right)\left( {4 - 7 + 5x} \right) = 0\\\left( {x + 3} \right)\left( {5x - 3} \right) = 0.\end{array}\)

Phương trình \(x + 3 = 0\) có nghiệm duy nhất \(x =  - 3\).

Phương trình \(5x - 3 = 0\) có nghiệm duy nhất \(x = \frac{3}{5}\).

Vậy phương trình \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\) có hai nghiệm \(x =  - 3\) và \(x = \frac{3}{5}\).

c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\)

\(\begin{array}{l}{\left( {x + 2} \right)^2} - {5^2} = 0\\\left( {x + 2 - 5} \right)\left( {x + 2 + 5} \right) = 0\\\left( {x - 3} \right)\left( {x + 7} \right) = 0.\end{array}\)

Phương trình \(x - 3 = 0\) có nghiệm duy nhất \(x = 3\).

Phương trình \(x + 7 = 0\) có nghiệm duy nhất \(x =  - 7\).

Vậy phương trình \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\) có hai nghiệm \(x = 3\) và \(x =  - 7\).

d) \(9{x^2} - 6x + 1 = {x^2}\)

\(\begin{array}{l}{\left( {3x - 1} \right)^2} - {x^2} = 0\\\left( {3x - 1 - x} \right)\left( {3x - 1 + x} \right) = 0\\\left( {2x - 1} \right)\left( {4x - 1} \right) = 0.\end{array}\)

Phương trình \(2x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{2}\).

Phương trình \(4x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{4}\).

Vậy phương trình \(9{x^2} - 6x + 1 = {x^2}\) có hai nghiệm \(x = \frac{1}{2}\) và \(x = \frac{1}{4}\).


Cùng chủ đề:

Giải bài tập 1. 15 trang 23 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 16 trang 23 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 17 trang 23 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 18 trang 23 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 19 trang 23 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 20 trang 24 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 21 trang 24 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 22 trang 24 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 23 trang 24 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá
Giải bài tập 1. 25 trang 24 SGK Toán 9 tập 1 - Cùng khám phá