Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ \(Oxyz\). Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) của một toà nhà, biết: \(\left( P \right):3x + y - z + 2 = 0\) \(\left( Q \right):6x + 2y - 2z + 11 = 0\) \(\left( R \right):x - 3y + 1 = 0\)
Đề bài
Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ \(Oxyz\). Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) của một toà nhà, biết:
\(\left( P \right):3x + y - z + 2 = 0\)
\(\left( Q \right):6x + 2y - 2z + 11 = 0\)
\(\left( R \right):x - 3y + 1 = 0\)
Phương pháp giải - Xem chi tiết
Viết các vectơ pháp tuyến của các mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\). Sau đó kiểm tra tính song song hoặc vuông góc của các mặt phẳng đó.
Lời giải chi tiết
Các vectơ pháp tuyến của các mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) lần lượt là \(\overrightarrow {{n_{\left( P \right)}}} = \left( {3;1; - 1} \right)\), \(\overrightarrow {{n_{\left( Q \right)}}} = \left( {6;2; - 2} \right)\) và \(\overrightarrow {{n_{\left( R \right)}}} = \left( {1; - 3;0} \right).\)
Ta thấy rằng \(\frac{3}{6} = \frac{1}{2} = \frac{{ - 1}}{{ - 2}}\) nên \(\overrightarrow {{n_{\left( P \right)}}} \) và \(\overrightarrow {{n_{\left( Q \right)}}} \) là 2 vectơ cùng phương. Từ đó suy ra \(\left( P \right)\parallel \left( Q \right).\)
Ta có \(\overrightarrow {{n_{\left( P \right)}}} .\overrightarrow {{n_{\left( R \right)}}} = 3.1 + 1.\left( { - 3} \right) + \left( { - 1} \right).0 = 0\) nên \(\overrightarrow {{n_{\left( P \right)}}} \) và \(\overrightarrow {{n_{\left( R \right)}}} \) có giá vuông góc với nhau. Suy ra \(\left( P \right) \bot \left( R \right).\)
Ta có \(\overrightarrow {{n_{\left( Q \right)}}} .\overrightarrow {{n_{\left( R \right)}}} = 6.1 + 2.\left( { - 3} \right) + \left( { - 2} \right).0 = 0\) nên \(\overrightarrow {{n_{\left( Q \right)}}} \) và \(\overrightarrow {{n_{\left( R \right)}}} \) có giá vuông góc với nhau. Suy ra \(\left( Q \right) \bot \left( R \right).\)