Processing math: 58%

Giải bài tập 11 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 11 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo

Cho hàm số (y = frac{1}{3}{x^3} - {x^2} + 4). a) Khảo sát và vẽ đồ thị của hàm số. b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.

Đề bài

Cho hàm số y=13x3x2+4.

a) Khảo sát và vẽ đồ thị của hàm số.

b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.

Phương pháp giải - Xem chi tiết

a) Bước 1. Tìm tập xác định của hàm số

Bước 2. Xét sự biến thiên của hàm số

− Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.

− Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có).

− Lập bảng biến thiên của hàm số.

Bước 3. Vẽ đồ thị của hàm số

− Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ (nếu có và dễ tìm), ...

− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).

− Vẽ đồ thị hàm số.

b) Quan sát đồ thị và tìm khoảng cách giữa 2 cực trị. Dùng định lí Pytago để tìm khoảng cách đó

Lời giải chi tiết

a) Tập xác định: D=R

  • Chiều biến thiên:

y=x22x=0[x=0x=2

Trên các khoảng (; 0), (2; +) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (0; 2) thì y' > 0 nên hàm số đồng biến trên khoảng đó.

  • Cực trị:

Hàm số đạt cực đại tại x = 0 và ycd=4

Hàm số đạt cực tiểu tại x = 2 và yct=83

  • Các giới hạn tại vô cực:

lim; \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } (\frac{1}{3}{x^3} - {x^2} + 4) =  + \infty

  • Bảng biến thiên:

Khi x = 0 thì y = 4 nên (0; 4) là giao điểm của đồ thị với trục Oy

Ta có: y = 0 \Leftrightarrow \frac{1}{3}{x^3} - {x^2} + 4 = 0 \Leftrightarrow x =  - 1,61

Vậy đồ thị của hàm số giao với trục Ox tại điểm (-1,61; 0)

b) Khoảng cách giữa 2 cực trị là AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{(4 - 8/3)}^2} + {2^2}} 

= \frac{{2\sqrt {13} }}{3}


Cùng chủ đề:

Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 10 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 10 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 10 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 11 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 11 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 11 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 11 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 11 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 12 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 12 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo