Giải bài tập 2 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 2 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo

Trong một trường học, tỉ lệ học sinh nữ là 52%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18% và 15%. Chọn ngẫu nhiên 1 học sinh của trường. a) Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật. b) Biết rằng học sinh được chọn có tham gia câu lạc bộ nghệ thuật. Tính xác suất học sinh đó là nam.

Đề bài

Trong một trường học, tỉ lệ học sinh nữ là 52%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18% và 15%. Chọn ngẫu nhiên 1 học sinh của trường.

a) Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật.

b) Biết rằng học sinh được chọn có tham gia câu lạc bộ nghệ thuật. Tính xác suất học sinh đó là nam.

Phương pháp giải - Xem chi tiết

Gọi \(A\) là biến cố “Chọn được 1 học sinh nữ”, \(B\) là biến cố “Chọn được 1 học sinh tham gia câu lạc bộ nghệ thuật”.

a) Xác suất cần tính là \(P\left( B \right)\). Để tính được xác suất này, ta sử dụng công thức tính xác suất toàn phần: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right)\).

b) Xác suất cần tính là \(P\left( {\bar A|B} \right)\). Sử dụng công thức Bayes để tính xác suất này.

Lời giải chi tiết

Gọi \(A\) là biến cố “Chọn được 1 học sinh nữ”, \(B\) là biến cố “Chọn được 1 học sinh tham gia câu lạc bộ nghệ thuật”.

Theo đề bài, ta có \(P\left( A \right) = 0,52 \Rightarrow P\left( {\bar A} \right) = 1 - 0,52 = 0,48\); \(P\left( {B|A} \right) = 0,18\) và \(P\left( {B|\bar A} \right) = 0,15\).

a) Xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật là:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,52.0,18 + 0,48.0,15 = 0,1656\)

b) Xác suất học sinh được chọn là nam, biết rằng em đó có tham gia câu lạc bộ nghệ thuật là:

\(P\left( {\bar A|B} \right) = \frac{{P\left( {\bar A} \right).P\left( {B|\bar A} \right)}}{{P\left( B \right)}} = \frac{{0,48.0,15}}{{0,1656}} = \frac{{10}}{{23}}.\)


Cùng chủ đề:

Giải bài tập 2 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 74 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 75 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 80 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 82 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 84 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 3 trang 11 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 3 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo