Giải bài tập 3.3 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức
Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và 12B. a) Tìm khoảng biến thiên, khoảng tứ phân vị cho các mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A, 12B. b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này ta nên dùng khoảng biến thiên hay khoảng tứ phân vị? Vì sao?
Đề bài
Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và 12B.
a) Tìm khoảng biến thiên, khoảng tứ phân vị cho các mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A, 12B.
b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này ta nên dùng khoảng biến thiên hay khoảng tứ phân vị? Vì sao?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:
Cho mẫu số liệu ghép nhóm:
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R=ak+1−a1.
Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là ΔQ, là hiệu số giữa tứ phân vị thứ ba Q3 và tứ phân vị thứ nhất Q1 của mẫu số liệu đó, tức là ΔQ=Q3−Q1.
Sử dụng kiến thức về ý nghĩa của khoảng tứ phân vị để giải thích: Khoảng tứ phân vị của mẫu số liệu ghép nhóm chỉ phụ thuộc vào nửa giữa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.
Lời giải chi tiết
a) Lớp 12A: Khoảng biến thiên: R=175−145=30
Ta có cỡ mẫu n=43. Giả sử x1,x2,...,x43 là chiều cao của các học sinh lớp 12A và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.
Vì n4=10,75 và 1<10,75<1+15 nên nhóm chứa tứ phân vị thứ nhất là nhóm [150;160) và tứ phân vị thứ nhất là: Q1=155+434−115.5=158,25
Vì 3n4=32,25 và 1+15+12<32,25<1+15+12+10 nên nhóm chứa tứ phân vị thứ ba là nhóm [165;170) và tứ phân vị thứ ba là: Q3=165+3.434−(1+15+12)10.5=167,125
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ΔQ1=167,125−158,25=8,875
Lớp 12B: Khoảng biến thiên: R=175−155=20
Ta có cỡ mẫu n=42. Giả sử x1,x2,...,x42 là chiều cao của các học sinh lớp 12B và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.
Vì n4=10,5 và 0<10,5<17 nên nhóm chứa tứ phân vị thứ nhất là nhóm [155;160) và ta có: Q′1=155+424−017.5=537534
Vì 3n4=31,5 và 17+10<31,5<17+10+9 nên nhóm chứa tứ phân vị thứ ba là nhóm [165;170) và tứ phân vị thứ ba là: Q′3=165+3.424−(17+10)9.5=3352
Khoảng biến thiên của mẫu số liệu ghép nhóm là: ΔQ2=3352−537534=16017
b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này, ta nên dùng khoảng tứ phân vị vì khoảng tứ phân vị chỉ phụ thuộc vào nửa giữa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.