Giải bài tập 3 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 9 chân trời sáng tạo


Giải bài tập 3 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo

Giải các phương trình: a) (frac{{x + 5}}{{x - 3}} + 2 = frac{2}{{x - 3}}); b) (frac{{3x + 5}}{{x + 1}} + frac{2}{x} = 3); c) (frac{{x + 3}}{{x - 2}} + frac{{x + 2}}{{x - 3}} = 2); d) (frac{{x + 2}}{{x - 2}} - frac{{x - 2}}{{x + 2}} = frac{{16}}{{{x^2} - 4}}).

Đề bài

Giải các phương trình:

a) \(\frac{{x + 5}}{{x - 3}} + 2 = \frac{2}{{x - 3}}\);

b) \(\frac{{3x + 5}}{{x + 1}} + \frac{2}{x} = 3\);

c) \(\frac{{x + 3}}{{x - 2}} + \frac{{x + 2}}{{x - 3}} = 2\);

d) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{{x^2} - 4}}\).

Phương pháp giải - Xem chi tiết

Để giải phương trình chứa ẩn ở mẫu, ta làm như sau:

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Xét mỗi giá trị tìm được ở Bước 3, giá trị nào thỏa mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.

Lời giải chi tiết

a) \(\frac{{x + 5}}{{x - 3}} + 2 = \frac{2}{{x - 3}}\)

Điều kiện xác định: \(x \ne 3\).

Ta có:

\(\begin{array}{l}\frac{{x + 5}}{{x - 3}} + 2 = \frac{2}{{x - 3}}\\\frac{{x + 5}}{{x - 3}} + \frac{{2(x - 3)}}{{x - 3}} = \frac{2}{{x - 3}}\\x + 5 + 2x - 6 = 2\\3x = 3\\x = 1\end{array}\)

Ta thấy \(x = 1\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là \(x = 1\).

b) \(\frac{{3x + 5}}{{x + 1}} + \frac{2}{x} = 3\)

Điều kiện xác định: \(x \ne 0\) và \(x \ne  - 1\).

Ta có:

\(\begin{array}{l}\frac{{3x + 5}}{{x + 1}} + \frac{2}{x} = 3\\\frac{{(3x + 5)x}}{{(x + 1)x}} + \frac{{2(x + 1)}}{{(x + 1)x}} = \frac{{3x(x + 1)}}{{(x + 1)x}}\\3{x^2} + 5x + 2x + 2 = 3{x^2} + 3x\\4x =  - 2\\x = \frac{{ - 1}}{2}\end{array}\)

Ta thấy \(x = \frac{{ - 1}}{2}\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là \(x = \frac{{ - 1}}{2}\).

c) \(\frac{{x + 3}}{{x - 2}} + \frac{{x + 2}}{{x - 3}} = 2\)

Điều kiện xác định: \(x \ne 2\) và \(x \ne 3\).

Ta có:

\(\begin{array}{l}\frac{{x + 3}}{{x - 2}} + \frac{{x + 2}}{{x - 3}} = 2\\\frac{{(x + 3)(x - 3)}}{{(x - 2)(x - 3)}} + \frac{{(x + 2)(x - 2)}}{{(x - 2)(x - 3)}} = \frac{{2(x - 2)(x - 3)}}{{(x - 2)(x - 3)}}\\{x^2} - 9 + {x^2} - 4 = 2{x^2} - 10x + 12\\10x = 25\\x = \frac{5}{2}\end{array}\)

Ta thấy \(x = \frac{5}{2}\) thỏa mãn điều kiện xác định.

Vậy nghiệm của phương trình là \(x = \frac{5}{2}\).

d) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{{x^2} - 4}}\)

Ta có \({x^2} - 4 = (x - 2)(x + 2)\) nên điều kiện xác định là \(x \ne  \pm 2\).

Ta có:

\(\begin{array}{l}\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{{x^2} - 4}}\\\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{x + 2}} = \frac{{16}}{{(x - 2)(x + 2)}}\\\frac{{{{(x + 2)}^2}}}{{(x - 2)(x + 2)}} - \frac{{{{(x - 2)}^2}}}{{(x - 2)(x + 2)}} = \frac{{16}}{{(x - 2)(x + 2)}}\\(x + 2 - x + 2)(x + 2 + x - 2) = 16\\4.2x = 16\\x = 2\end{array}\)

Ta thấy \(x = 2\) không thỏa mãn điều kiện xác định.

Vậy phương trình vô nghiệm.


Cùng chủ đề:

Giải bài tập 2 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 97 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 98 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 102 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 103 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 3 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 3 trang 10 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 3 trang 14 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 3 trang 17 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 3 trang 21 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 3 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo