Giải bài tập 5. 46 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Giải bài tập 5.46 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

Trong không gian Oxyz, cho hai mặt phẳng (P): \(x - y - z - 1 = 0\), (Q): \(2x + y - z - 2 = 0\) và điểm \(A\left( { - 1;2;0} \right)\). Viết phương trình mặt phẳng (R) đi qua điểm A đồng thời vuông góc với cả hai mặt phẳng (P) và (Q).

Đề bài

Trong không gian Oxyz, cho hai mặt phẳng (P): \(x - y - z - 1 = 0\), (Q): \(2x + y - z - 2 = 0\) và điểm \(A\left( { - 1;2;0} \right)\). Viết phương trình mặt phẳng (R) đi qua điểm A đồng thời vuông góc với cả hai mặt phẳng (P) và (Q).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương để viết phương trình: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:

+ Tìm vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

Lời giải chi tiết

Mặt phẳng (P) nhận \(\overrightarrow {{n_1}} \left( {1; - 1; - 1} \right)\) làm một vectơ pháp tuyến.

Mặt phẳng (Q) nhận \(\overrightarrow n \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến.

Ta có: \(\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\1&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&2\end{array}} \right|,\left| {\begin{array}{*{20}{c}}1&{ - 1}\\2&1\end{array}} \right|} \right) = \left( {2; - 1;3} \right)\)

Vì mặt phẳng (R) đồng thời vuông góc với cả hai mặt phẳng (P) và (Q) nên mặt phẳng (R) nhận \(\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {2; - 1;3} \right)\) làm một vectơ pháp tuyến.

Mà mặt phẳng (R) đi qua điểm \(A\left( { - 1;2;0} \right)\) nên phương trình mặt phẳng (R) là:

\(2\left( {x + 1} \right) - \left( {y - 2} \right) + 3z = 0 \Leftrightarrow 2x - y + 3z + 4 = 0\)


Cùng chủ đề:

Giải bài tập 5. 41 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 42 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 43 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 44 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 45 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 46 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 47 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 48 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 49 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 5. 51 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức