Giải bài tập 6.42 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức
Phương trình bậc hai có hai nghiệm ({x_1} = 13) và ({x_2} = 25) là A. ({x^2} - 13x + 25 = 0). B. ({x^2} - 25x + 13 = 0). C. ({x^2} - 38x + 325 = 0). D. ({x^2} + 38x + 325 = 0).
Đề bài
Phương trình bậc hai có hai nghiệm \({x_1} = 13\) và \({x_2} = 25\) là
A. \({x^2} - 13x + 25 = 0\).
B. \({x^2} - 25x + 13 = 0\).
C. \({x^2} - 38x + 325 = 0\).
D. \({x^2} + 38x + 325 = 0\).
Phương pháp giải - Xem chi tiết
Hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
Lời giải chi tiết
Tổng hai nghiệm của phương trình là \(S = 38,\) tích hai nghiệm của phương trình là \(P = 325\) nên \({x_1},{x_2}\) là hai nghiệm của phương trình: \({x^2} - 38x + 325 = 0\).
Chọn C
Cùng chủ đề:
Giải bài tập 6. 42 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức