Loading [MathJax]/jax/output/CommonHTML/jax.js

Giải mục 1 trang 20, 21 Chuyên đề học tập Toán 11 - Chân trời sáng tạo — Không quảng cáo

Giải chuyên đề học tập Toán lớp 11 Chân trời sáng tạo Bài 4. Phép đối xứng tâm Chuyên đề học tập Toán 11 Chân


Giải mục 1 trang 20, 21 Chuyên đề học tập Toán 11 - Chân trời sáng tạo

Cho điểm O. Gọi f là quy tắc xác định như sau:

Khám phá 1

Cho điểm O. Gọi f là quy tắc xác định như sau:

a) Với điểm M khác O, xác định điểm M’ sao cho O là trung điểm của MM’ (Hình 1).

b) Với điểm M trùng với O thì f biến điểm M thành chính nó.

Hỏi f có phải là phép biến hình không?

Phương pháp giải:

Phép biến hình f trong mặt phẳng là một quy tắc cho tương ứng với mỗi điểm M với duy nhất một điểm M’. Điểm M’ được gọi là ảnh của điểm M qua phép biến hình f, kí hiệu M=f(M).

Lời giải chi tiết:

Theo đề, ta có M’ = f(M).

Ta thấy f là một quy tắc sao cho ứng với mỗi điểm M đều xác định duy nhất một điểm M’.

Vậy f là một phép biến hình.

Thực hành 1

Trong mặt phẳng tọa độ Oxy, cho các điểm I(1; 1), M(2; 2), N(0; –3) và P(–1; –2). Tìm tọa độ các điểm M=ĐI(M),N=ĐI(N),P=ĐI(P).

Phương pháp giải:

Nếu  thì {xM+xM=2xIyM+yM=2yI (I là trung điểm của MM’)

Lời giải chi tiết:

+ Ta có M=ĐI(M).

Suy ra I(1; 1) là trung điểm MM’ với M(2; 2).

Do đó {xM=2xIxM=2.12=0yM=2yIyM=2.12=0

Suy ra M’ có tọa độ là (0; 0).

+ Ta có N=ĐI(N).

Suy ra I(1; 1) là trung điểm của NN’ với N(0; –3).

Do đó {xN=2xIxN=2.10=2yN=2yIyN=2.1+3=5

Suy ra N’ có tọa độ là N’(2; 5).

+ Ta có P=ĐI(P).

Suy ra I(1; 1) là trung điểm PP’ với P(–1; –2).

Do đó {xP=2xIxP=2.1+1=3yP=2yIyP=2.1+2=4

Suy ra P’ có tọa độ là P’(3; 4).

Vậy M(0;0),N(2;5),P(3;4).

Vận dụng 1

Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.

Phương pháp giải:

Cho điểm O, phép biến hình biến điểm O thành chính nó và biến mỗi điểm MO thành điểm M’ sao cho O  là trung điểm của MM’ được gọi là phép đối xứn tâm O, kí hiệu . Điểm O được gọi là tâm đối xứng.

Lời giải chi tiết:

⦁ Ta xét hình màu đỏ:

Giả sử ta chọn điểm O trên hình màu đỏ như hình vẽ.

Lấy điểm B trùng O. Khi đó qua O, điểm đối xứng với B là chính nó.

Lấy điểm A bất kì trên hình màu đỏ sao cho A ≠ O.

Khi đó ta luôn xác định được một điểm A’ sao cho O là trung điểm của đoạn AA’.

Tương tự như vậy, với mỗi điểm M bất kì khác O trên hình màu đỏ, ta đều xác định được một điểm M’ trên hình sao cho O là trung điểm của đoạn MM’.

Vậy phép đối xứng tâm O biến hình màu đỏ thành chính nó.

⦁ Ta xét hình màu xanh lá:

Giả sử ta chọn điểm I trên hình màu xanh lá như hình vẽ.

Lấy điểm F trùng I. Khi đó qua I, điểm đối xứng với F là chính nó.

Lấy điểm E bất kì trên hình màu xanh lá sao cho E ≠ I.

Khi đó ta luôn xác định được một điểm E’ sao cho I là trung điểm của đoạn EE’.

Tương tự như vậy, với mỗi điểm M bất kì khác I trên hình màu xanh lá, ta đều xác định được một điểm M’ trên hình sao cho I là trung điểm của đoạn MM’.

Vậy phép đối xứng tâm I biến hình màu xanh lá thành chính nó.

⦁ Ta xét hình màu xanh biển:

Giả sử ta chọn điểm H trên hình màu xanh biển như hình vẽ.

Lấy điểm P trùng H. Khi đó qua H, điểm đối xứng với P là chính nó.

Lấy điểm P bất kì trên hình màu xanh biển sao cho P ≠ H.

Khi đó ta luôn xác định được một điểm P’ sao cho H là trung điểm của đoạn PP’.

Tương tự như vậy, với mỗi điểm M bất kì khác H trên hình màu xanh biển, ta đều xác định được một điểm M’ trên hình sao cho H là trung điểm của đoạn MM’.

Vậy phép đối xứng tâm H biến hình màu xanh biển thành chính nó.


Cùng chủ đề:

Giải khởi động trang 70 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải khởi động trang 81 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 6, 7 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 11 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 15 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 20, 21 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 25, 26, 27 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 30, 31, 32 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 38, 39 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 50, 51, 52, 53, 54 Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Giải mục 1 trang 59, 60, 61 Chuyên đề học tập Toán 11 - Chân trời sáng tạo