Processing math: 27%

Giải mục 1 trang 20, 21 SGK Toán 12 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Giải mục 1 trang 20, 21 SGK Toán 12 tập 1 - Kết nối tri thức

Đường tiệm cận ngang

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 20 SGK Toán 12 Kết nối tri thức

Cho hàm số y=f(x)=2x+1x có đồ thị (C). Với x>0, xét điểm M (x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng y=2 (H.1.19).

a) Tính khoảng cách MH.

b) Có nhận xét gì về khoảng cách MH khi x+?

Phương pháp giải:

Sử dụng kiến thức về giới hạn của hàm số để tính.

Lời giải chi tiết:

a) Ta có: M(x;2x+1x); H(x;2).

Do đó, MH=(xx)2+(22x+1x)2=(2x2x1x)2=1x (do x>0)

b) Ta có: lim. Do đó, khi x \to  + \infty thì MH \to 0.

LT1

Trả lời câu hỏi Luyện tập 1 trang 21 SGK Toán 12 Kết nối tri thức

Tìm tiệm cận ngang của đồ thị hàm số y = f\left( x \right) = \frac{{2x - 1}}{{x - 1}}.

Phương pháp giải:

Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng y = {y_0} gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y = f\left( x \right) nếu \mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0} hoặc \mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}.

Lời giải chi tiết:

Ta có: \mathop {\lim }\limits_{x \to  + \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2;\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2.

Do đó, tiệm cận ngang của đồ thị hàm số y = f\left( x \right) = \frac{{2x - 1}}{{x - 1}}y = 2.

VD1

Trả lời câu hỏi Vận dụng 1 trang 21 SGK Toán 12 Kết nối tri thức

Giải bài toán trong tình huống mở đầu.

Giả sử khối lượng còn lại của một chất phóng xạ (gam) sau t ngày phân rã được cho bởi hàm số m\left( t \right) = 15{e^{ - 0,012t}}. Khối lượng m(t) thay đổi ra sao khi t \to  + \infty ? Điều này thể hiện trên Hình 1.18 như thế nào?

Phương pháp giải:

Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng y = {y_0} gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y = f\left( x \right) nếu \mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0} hoặc \mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}.

Lời giải chi tiết:

Ta có: \mathop {\lim }\limits_{t \to  + \infty } m\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } 15{e^{ - 0,012t}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{15}}{{{e^{0,012t}}}} = 0

Do đó, m\left( t \right) \to 0 khi t \to  + \infty .

Trong hình 1.18, khi t \to  + \infty thì m(t) càng gần trục hoành Ot (nhưng không chạm trục Ot).


Cùng chủ đề:

Giải mục 1 trang 4,5,6 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 1 trang 5,6,7 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 1 trang 12,13,14 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 1 trang 15,16,17 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 1 trang 19,20,21 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 1 trang 20, 21 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 1 trang 26, 27 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 1 trang 29,30,31 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 1 trang 33, 34, 35 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 1 trang 41,42,43 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 1 trang 46,47,48 SGK Toán 12 tập 1 - Kết nối tri thức