Giải mục 1 trang 42, 43 SGK Toán 11 tập 2 - Chân trời sáng tạo
a) Dùng định nghĩa tỉnh đạo hàm của hàm số (y = x) tại điểm (x = {x_0}).
Hoạt động 1
a) Dùng định nghĩa tỉnh đạo hàm của hàm số y=x tại điểm x=x0.
b) Nhắc lại đạo hàm của các hàm số y=x2,y=x3 đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số y=xn với n∈N∗.
Phương pháp giải:
Tính giới hạn f′(x0)=lim.
Lời giải chi tiết:
a) Với bất kì {x_0} \in \mathbb{R}, ta có:
f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1
Vậy f'\left( x \right) = {\left( x \right)^\prime } = 1 trên \mathbb{R}.
b) Ta có:
\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}
Thực hành 1
Tính đạo hàm của hảm số y = {x^{10}} tại x = - 1 và x = \sqrt[3]{2}.
Phương pháp giải:
Áp dụng công thức {\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}.
Lời giải chi tiết:
Ta có: {\left( {{x^{10}}} \right)^\prime } = 10{{\rm{x}}^9}
Từ đó: y'\left( { - 1} \right) = 10.{\left( { - 1} \right)^9} = - 10 và y'\left( {\sqrt[3]{2}} \right) = 10.{\left( {\sqrt[3]{2}} \right)^9} = 80.