Giải mục 2 trang 114, 115 SGK Toán 11 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài 16. Giới hạn của hàm số Toán 11 kết nối tri thức


Giải mục 2 trang 114, 115 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hàm số (fleft( x right) = 1 + frac{2}{{x - 1}}) có đồ thị như Hình 5.4.Giả sử (left( {{x_n}} right)) là dãy số sao cho ({x_n} > 1,;{x_n} to ; + infty ). Tính (fleft( {{x_n}} right)) và (mathop {{rm{lim}}}limits_{n to + infty } fleft( {{x_n}} right))

HĐ 3

Cho hàm số \(f\left( x \right) = 1 + \frac{2}{{x - 1}}\) có đồ thị như Hình 5.4.

Giả sử \(\left( {{x_n}} \right)\) là dãy số sao cho \({x_n} > 1,\;{x_n} \to \; + \infty \). Tính \(f\left( {{x_n}} \right)\) và \(\mathop {{\rm{lim}}}\limits_{n \to  + \infty } f\left( {{x_n}} \right)\).

Phương pháp giải:

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta có hàm số \(f\left( x \right)\) có giới hạn là số L khi \(x \to  + \infty \) nếu dãy số \(\left( {{x_n}} \right)\) bất kỳ, \({x_n} > a\) và \({x_n} \to  + \infty \), ta có \(f\left( {{x_n}} \right) \to L,\) kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = L\;\)hay \(f\left( x \right) \to L\) khi \(x \to  + \infty \)

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { - \infty ;b} \right)\). Ta có hàm số \(f\left( x \right)\) có giới hạn là số L khi \(x \to  - \infty \) nếu dãy số \(\left( {{x_n}} \right)\) bất kỳ, \({x_n} < b\) và \({x_n} \to  - \infty \), ta có \(f\left( {{x_n}} \right) \to L,\) kí hiệu \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = L\;\)hay \(f\left( x \right) \to L\) khi \(x \to  - \infty \).

Lời giải chi tiết:

\(f\left( {{x_n}} \right) = 1 + \frac{2}{{{x_n} - 1}}\).

\(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right) = \mathop {\lim }\limits_{n \to  + \infty } \left( {1 + \frac{2}{{{x_n} - 1}}} \right) = 1\).

LT 3

Tính: \(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}}\).

Phương pháp giải:

\(a\sqrt b  = \left\{ {\begin{array}{*{20}{c}}{\sqrt {{a^2}b} \;\;\;\;\;\;\;\;\;a \ge 0}\\{ - \sqrt {{a^2}b} \;\;\;\;\;a < 0}\end{array}} \right.\).

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\left| x \right|\sqrt {1 + \frac{2}{{{x^2}}}} }}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 + \frac{2}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {1 + \frac{2}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\end{array}\)

VD

Cho tam giác vuông OAB với \(A = \left( {a;0} \right)\) và \(B = \left( {0;1} \right)\) như Hình 5.5. Đường cao OH có độ dài là h.

a) Tính h theo a,.

b) Khi điểm A dịch chuyển về O , điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox , điểm H thay đổi thế nào? Tại sao?

Phương pháp giải:

Áp dụng định lý Pytago để tính h theo a.

Tính giới hạn.

Lời giải chi tiết:

a) Ta có: \(AB = \sqrt {{a^2} + {1^1}} ,\;\;\;AB \times OH = OB \times OA\)

\( \Rightarrow h \times \sqrt {{a^2} + {1^2}}  = a \Rightarrow h = \frac{a}{{\sqrt {{a^2} + {1^2}} }}\)

b) \(\mathop {\lim }\limits_{a \to 0} \frac{a}{{\sqrt {{a^2} + {1^2}\;} }} = \mathop {\lim }\limits_{a \to 0} \frac{1}{{\sqrt {1 + \frac{1}{{{a^2}}}} }} = 0\)

Vì vậy khi A dịch chuyển về O thì điểm H dịch chuyển về gần A hơn, và h dần về 0

c) \(\mathop {\lim }\limits_{a \to  + \infty } \frac{a}{{\sqrt {{a^2} + 1} }} = \mathop {\lim }\limits_{a \to  + \infty } \frac{1}{{\sqrt {1 + \frac{1}{{{a^2}}}} }} = 1\)

Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H dịch chuyển về phía điểm B và h dần về 1.


Cùng chủ đề:

Giải mục 2 trang 89, 90, 91 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 2 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 2 trang 97, 98 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 2 trang 100, 101 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 2 trang 106,107 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 2 trang 114, 115 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 2 trang 120, 121 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 3 trang 7, 8 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 3 trang 10,11,12,13 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 3 trang 14 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 3 trang 19 SGK Toán 11 tập 1 - Kết nối tri thức