Processing math: 100%

Giải mục 2 trang 61, 62 SGK Toán 10 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 3. Đường tròn trong mặt phẳng tọa độ Toán 10 Chân


Giải mục 2 trang 61, 62 SGK Toán 10 tập 2 - Chân trời sáng tạo

Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(4;6) Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình:

HĐ Khám phá 2

Cho điểm M0(x0;y0) nằm trên đường tròn (C) tâm I(a;b)và cho điểmM(x;y) tùy ý trong mặt phẳng Oxy . Gọi Δ là tiếp tuyến với (C) tại M0

a) Viết biểu thức tọa độ của hai vt M0MM0I

b) Viết biểu thức tọa độ  của tích vô hướng của hai vt M0MM0I

c) Phương trình M0M.M0I=0là phương trình của đường thẳng nào?

Phương pháp giải:

a) Với A(a;b),B(x;y) thì tọa độ của vt AB=(xa;yb)

b) Với a=(a,b),b=(x;y) thì a.b=ax+by

c) Từ tích vô hướng đưa ra kết luận là M0M=(xx0;yy0), M0I=(ax0;by0)

Lời giải chi tiết:

a) Biểu thức tọa độ của hai vt M0MM0IM0M=(xx0;yy0), M0I=(ax0;by0)

b) Ta có:

M0M.M0I=(xx0)(ax0)+(by0)(yy0)

c) M0M.M0I=0M0MM0I

M0I là đoạn thẳng nối tâm với điểm nằm ngoài

Vậy ta thấy pt đường thẳng MM0 là tiếp tuyến của đường tròn tại điểm M0

Thực hành 3

Viết phương trình tiếp tuyến của đường tròn (C):x2+y22x4y20=0 tại điểm A(4;6)

Phương pháp giải:

Phương trình tiếp tuyến của đường tròn tâm I(a;b) tại điểm M(x0;y0)nằm trên đường tròn là: (ax0)(xx0)+(by0)(yy0)=0

Lời giải chi tiết:

Ta có 42+622.44.620=0, nên điểm A thuộc (C)

Đường tròn (C):x2+y22x4y20=0 có tâm I(1;2)

Phương trình tiếp tuyến d của (C) tại A(4;6) là:

(41)(x4)+(62)(y6)=03x+4y+16=0

Vận dụng 3

Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình:

(x1)2+(y1)2=169144.

Khi người đó vung đĩa đến vị trí điểm M(1712;2) thì buông đĩa (hình 4). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm M

Phương pháp giải:

Phương trình tiếp tuyến của đường trong tâm I(a;b) tại điểm M(x0;y0)nằm trên đường tròn là: (ax0)(xx0)+(by0)(yy0)=0

Lời giải chi tiết:

Ta có (17121)2+(21)2=169144, nên điểm M  thuộc (C)

Đường tròn (x1)2+(y1)2=169144 có tâm I(1;1)

Phương trình tiếp tuyến d của (C) tại M(1712;2) là:

(17121)(x1712)+(21)(y2)=052x+y13324=0


Cùng chủ đề:

Giải mục 2 trang 34, 35 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 40, 41 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 43, 44 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 49, 50, 51, 52 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 51, 52, 53 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 61, 62 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 62, 63 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 65, 66, 67 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 67, 68, 69 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 75, 76, 77 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 78, 79, 80 SGK Toán 10 tập 2 - Chân trời sáng tạo