Giải mục 2 trang 62, 63 SGK Toán 10 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 1. Giá trị lượng giác của một góc từ 0 đến 180 Toán


Giải mục 2 trang 62, 63 SGK Toán 10 tập 1 - Chân trời sáng tạo

Trên nửa đường tròn đơn vị, cho dây cung NM song song với trục Ox (Hình 4). Tính tổng số đo của hai góc xOM và xON Tính các giá trị lượng giác: sin120, cos150;cot 135

HĐ Khám phá 2

Trên nửa đường tròn đơn vị, cho dây cung NM song song với trục Ox (Hình 4). Tính tổng số đo của hai góc \(\widehat {xOM}\) và \(\widehat {xON}.\)

Phương pháp giải:

Tính góc \(\widehat {xON}\) theo góc \(\widehat {xOM}.\)

Lời giải chi tiết:

Gọi H là hình chiếu vuông góc của N Ox.

Ta có: \(\widehat {NOH} = \widehat {ONM} = \widehat {OMN} = \widehat {MOx} = \alpha \) (do NM song song với Ox)

Mà \(\widehat {xOM} + \widehat {NOH} = {180^o}\)

Suy ra \(\widehat {xON} + \widehat {MOx} = {180^o}\)

Thực hành 2

Tính các giá trị lượng giác: \(\sin {120^o};\cos {150^o};\cot {135^o}.\)

Phương pháp giải:

\(\begin{array}{l}\sin {120^o} = \sin \;({180^o} - {60^o});\\\cos {150^o} =  - \cos \;({180^o} - {30^o});\\\cot {135^o} =  - \cot \;({180^o} - {45^o}).\end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}\sin {120^o} = \sin \;({180^o} - {60^o}) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\cos {150^o} =  - \cos \;({180^o} - {30^o}) =  - \cos {30^o} =  - \frac{{\sqrt 3 }}{2};\\\cot {135^o} =  - \cot \;({180^o} - {45^o}) =  - \cot {45^o} =  - 1.\end{array}\)

Vận dụng 1

Cho biết \(\sin \alpha  = \frac{1}{2},\) tìm góc \(\alpha \;({0^o} \le \alpha  \le {180^o})\) bằng cách vẽ nửa đường tròn đơn vị.

Phương pháp giải:

Vẽ nửa đường tròn đơn vị.

\(\sin \alpha  = \frac{1}{2}\) nên lấy các điểm có tung độ là \(\frac{1}{2}\). Từ đó tính góc \(\alpha \).

Lời giải chi tiết:

Gọi M là điểm thuộc nửa đường tròn đơn vị sao cho: \(\widehat {xOM} = \alpha \)

Do \(\sin \alpha  = \frac{1}{2}\) nên tung độ của M bằng \(\frac{1}{2}.\)

Vậy ta xác định được hai điểm N và M thỏa mãn \(\sin \widehat {xON} = \sin \widehat {xOM} = \frac{1}{2}\)

Đặt \(\beta  = \widehat {xOM} \Rightarrow \widehat {xON} = {180^o} - \beta \)

Xét tam giác OHM vuông tại H ta có: \(MH = \frac{1}{2} = \frac{{OM}}{2} \Rightarrow \beta  = {30^o}\)

\( \Rightarrow \widehat {xON} = {180^o} - {30^o} = {150^o}\)

Vậy \(\alpha  = {30^o}\) hoặc \(\alpha  = {150^o}\)


Cùng chủ đề:

Giải mục 2 trang 40, 41 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 43, 44 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 49, 50, 51, 52 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 51, 52, 53 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 61, 62 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 62, 63 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 65, 66, 67 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 67, 68, 69 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 75, 76, 77 SGK Toán 10 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 78, 79, 80 SGK Toán 10 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 83 SGK Toán 10 tập 2 - Chân trời sáng tạo