Giải mục 3 trang 20, 21 SGK Toán 8 tập 1– Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài 3. Hằng đẳng thức đáng nhớ Toán 8 chân trời sáng tạo


Giải mục 3 trang 20, 21 SGK Toán 8 tập 1– Chân trời sáng tạo

Hoàn thành các phép nhân đa thức sau vào vở, thu gọn kết quả nhận được:

HĐ3

Hoàn thành các phép nhân đa thức sau vào vở, thu gọn kết quả nhận được:

\(\begin{array}{l}{\left( {a + b} \right)^3} = \left( {a + b} \right){\left( {a + b} \right)^2}\\\;\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\;\; = ...\end{array}\)                                   \(\begin{array}{l}{\left( {a - b} \right)^3} = \left( {a - b} \right){\left( {a - b} \right)^2}\\\;\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\;\; = ...\end{array}\)

Phương pháp giải:

Áp dụng hằng đẳng thức: Bình phương của một tổng, một hiệu và quy tắc nhân đa thức.

Lời giải chi tiết:

\(\begin{array}{l}{\left( {a + b} \right)^3} = \left( {a + b} \right){\left( {a + b} \right)^2}\\\;\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {{a^2} + 2ab + {b^2}} \right)\\\;\;\;\;\;\;\;\;\;\;\; = a.{a^2} + a.2ab + a.{b^2} + b.{a^2} + b.2ab + b.{b^2}\\\;\;\;\;\;\;\;\;\;\;\; = {a^3} + 2{a^2}b + a{b^2} + {a^2}b + 2a{b^2} + {b^3}\\\;\;\;\;\;\;\;\;\;\;\; = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\end{array}\)        \(\begin{array}{l}{\left( {a - b} \right)^3} = \left( {a - b} \right){\left( {a - b} \right)^2}\\\;\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {{a^2} - 2ab + {b^2}} \right)\\\;\;\;\;\;\;\;\;\;\;\; = a.{a^2} - a.2ab + a.{b^2} - b.{a^2} + b.2ab - b.{b^2}\\\;\;\;\;\;\;\;\;\;\;\; = {a^3} - 2{a^2}b + a{b^2} - {a^2}b + 2a{b^2} - {b^3}\\\;\;\;\;\;\;\;\;\;\;\; = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\end{array}\)

Thực hành 6

Tính:

a) \({\left( {x + 2y} \right)^3}\)

b) \({\left( {3y - 1} \right)^3}\)

Phương pháp giải:

Áp dụng hằng đẳng thức: Lập phương của một tổng, một hiệu

Lời giải chi tiết:

a) \({\left( {x + 2y} \right)^3} = {x^3} + 3.{x^2}.2y + 3.x.{\left( {2y} \right)^2} + {\left( {2y} \right)^3} = {x^3} + 6{x^2}y + 12x{y^2} + 8{y^3}\)

b) \({\left( {3y - 1} \right)^3} = {\left( {3y} \right)^3} - 3.{\left( {3y} \right)^2}.1 + 3.3y{.1^2} - {1^3} = 27{y^3} - 27{y^2} + 9y - 1\)

Vận dụng 3

Một thùng chứa dạng hình lập phương có độ dài cạnh bằng \(x\) (cm). Phần vỏ bao gồm nắp có độ dày \(3\)cm. Tính dung tích (sức chứa) của thùng, viết kết quả dưới dạng đa thức.

Phương pháp giải:

Áp dụng công thức tính thể tích của hình lập phương.

Áp dụng hằng đẳng thức: Lập phương của một hiệu.

Lời giải chi tiết:

Dung tích của thùng có độ dài các cạnh là: \(x - 3 - 3 = x - 6(cm)\)

Dung tích (sức chứa) của thùng là:

\((x - 6)^3 = x^3 - 18x^2 + 108x - 216(cm^3)\)


Cùng chủ đề:

Giải mục 2 trang 110, 111 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải mục 3 trang 9 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải mục 3 trang 12, 13 SGK Toán 8 – Chân trời sáng tạo
Giải mục 3 trang 15, 16 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải mục 3 trang 18, 19, 20, 21 SGK Toán 8 – Chân trời sáng tạo
Giải mục 3 trang 20, 21 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải mục 3 trang 25 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải mục 3 trang 28, 29, 30 SGK Toán 8 tập 1 – Chân trời sáng tạo
Giải mục 3 trang 61 SGK Toán 8 – Chân trời sáng tạo
Giải mục 3 trang 69, 70 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải mục 3 trang 70, 71 SGK Toán 8 – Chân trời sáng tạo