Giải mục 3 trang 46 SGK Toán 11 tập 1 - Cánh Diều — Không quảng cáo

Toán 11, giải toán lớp 11 cánh diều Bài 1. Dãy số Toán 11 Cánh diều


Giải mục 3 trang 46 SGK Toán 11 tập 1 - Cánh Diều

Cho dãy số (left( {{u_n}} right)) với ({u_n} = {n^2}). Tính ({u_{n + 1}}). Từ đó hãy so sánh ({u_{n + 1}}) và ({u_n}) với mọi (n in mathbb{N}*)

HĐ 4

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2}\). Tính \({u_{n + 1}}\). Từ đó hãy so sánh \({u_{n + 1}}\) và \({u_n}\) với mọi \(n \in \mathbb{N}*\)

Phương pháp giải:

Dựa vào phương pháp truy hồi để xác định

Lời giải chi tiết:

Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)

Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)

LT - VD 4

Chứng minh rằng dãy số \((v_n)\) với \(v_n = \frac{1}{3^x}\) là một dãy số giảm.

Phương pháp giải:

Chứng minh dựa vào khái niệm dãy số tăng, giảm

Lời giải chi tiết:

Ta có: \(v_{n+1}=\frac{1}{3^{n+1}}\)

Xét hiệu \(v_{n+1}-v_n=\frac{1}{3^{n+1}}-\frac{1}{3^n}=-\frac{2}{3}.\frac{1}{3^n} < 0\)

Suy ra \(v_{n+1} < v_n\).

Vậy dãy số giảm.


Cùng chủ đề:

Giải mục 3 trang 8 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 3 trang 18, 19 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 19, 20 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 3 trang 26, 27 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 35, 36, 37 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 46 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 50, 51 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 55, 56 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 63 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 70, 71 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 3 trang 81, 82 SGK Toán 11 tập 2 - Cánh Diều