Processing math: 7%

Giải mục 3 trang 73, 74, 75 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 2. Giới hạn của hàm số Toán 11 Chân trời sáng tạo


Giải mục 3 trang 73, 74, 75 SGK Toán 11 tập 1 - Chân trời sáng tạo

Giá cước vận chuyển bưu kiện giữa hai thành phố do một đơn vị cung cấp được cho bởi bảng sau:

Hoạt động 3

Giá cước vận chuyển bưu kiện giữa hai thành phố do một đơn vị cung cấp được cho bởi bảng sau:

Nếu chỉ xét trên khoảng từ 0 đến 5 (tính theo 100 gam) thì hàm số giả cước (tính theo nghìn đồng) xác định như sau:

f(x)={6khix(0;1]7khix(1;2,5]10khix(2,5;5]

Đồ thị của hàm số như Hình 2.

a) Giả sử (xn) là dãy số bất kì sao cho x(1;2,5)lim. Tìm \lim f\left( {{x_n}} \right).

b) Giả sử \left( {{x_n}'} \right) là dãy số bất kì sao cho {x_n}' \in \left( {0;1} \right)\lim {x_n}' = 1. Tìm \lim f\left( {{x_n}'} \right).

c) Nhận xét về kết quả ở a) và b)

Phương pháp giải:

Áp dụng công thức tính giới hạn của hằng số.

Lời giải chi tiết:

a) Khi x \in \left( {1;2,5} \right) thì f\left( {{x_n}} \right) = 7 nên \lim f\left( {{x_n}} \right) = \lim 7 = 7.

b) Khi {x_n}' \in \left( {0;1} \right) thì f\left( {{x_n}'} \right) = 6 nên \lim f\left( {{x_n}'} \right) = \lim 6 = 6.

c) Ta thấy \lim {x_n} = \lim {x_n}' = 1 nhưng \lim f\left( {{x_n}} \right) \ne \lim f\left( {{x_n}'} \right)

Thực hành 3

Cho hàm số f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 - 2x}&{khi\,\,x \le  - 1}\\{{x^2} + 2}&{khi\,\,x >  - 1}\end{array}} \right..

Tìm các giới hạn \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right)\mathop {\lim }\limits_{x \to  - 1} f\left( x \right) (nếu có).

Phương pháp giải:

− Để tính giới hạn \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right), ta áp dụng định lý về giới hạn bên trái và giới hạn bên phải của hàm số.

− Để tính giới hạn \mathop {\lim }\limits_{x \to  - 1} f\left( x \right), ta so sánh hai giới hạn \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right).

• Nếu \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right) = L thì \mathop {\lim }\limits_{x \to  - 1} f\left( x \right) = L.

• Nếu \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right) thì không tồn tại \mathop {\lim }\limits_{x \to  - 1} f\left( x \right).

Lời giải chi tiết:

a) Giả sử \left( {{x_n}} \right) là dãy số bất kì, {x_n} >  - 1{x_n} \to  - 1. Khi đó f\left( {{x_n}} \right) = x_n^2 + 2

Ta có: \lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 + 2} \right) = \lim x_n^2 + \lim 2 = {\left( { - 1} \right)^2} + 2 = 3

Vậy \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = 3.

Giả sử \left( {{x_n}} \right) là dãy số bất kì, {x_n} <  - 1{x_n} \to  - 1. Khi đó f\left( {{x_n}} \right) = 1 - 2{x_n}.

Ta có: \lim f\left( {{x_n}} \right) = \lim \left( {1 - 2{x_n}} \right) = \lim 1 - \lim \left( {2{x_n}} \right) = \lim 1 - 2\lim {x_n} = 1 - 2.\left( { - 1} \right) = 3

Vậy \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = 3.

b) Vì \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right) = 3 nên \mathop {\lim }\limits_{x \to  - 1} f\left( x \right) = 3.


Cùng chủ đề:

Giải mục 3 trang 54, 55 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 59, 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 62, 63, 64 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 67, 68 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 67, 68, 69 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 73, 74, 75 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 77, 78 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 82, 83 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 90, 91 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 94, 95 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 109, 110 SGK Toán 11 tập 1 - Chân trời sáng tạo