Processing math: 100%

Giải mục 3 trang 67, 68, 69 SGK Toán 11 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 3. Hai mặt phẳng vuông góc Toán 11 Chân trời sáng tạo


Giải mục 3 trang 67, 68, 69 SGK Toán 11 tập 2 - Chân trời sáng tạo

Cho đường thẳng (a) vuông góc với mặt phẳng (left( Q right)).

Hoạt động 4

Cho đường thẳng a vuông góc với mặt phẳng (Q). Mặt phẳng (P) chứa a và cắt (Q) theo giao tuyến c. Trong (Q) ta vẽ đường thẳng b vuông góc với c.

Hỏi:

a) (P) có vuông góc với (Q) không?

b) Đường thẳng b vuông góc với (P) không?

Phương pháp giải:

Sử dụng định lí 1: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Lời giải chi tiết:

a) Ta có:

a(Q)a(P)}(P)(Q)

b) Ta có:

a(Q)b(Q)}abbca,c(P)}b(P)

Hoạt động 5

Cho hai mặt phẳng (P)(Q) cùng vuông góc với mặt phẳng (R). Gọi a là giao tuyến của (P)(Q). Lấy điểm M trong (R), vẽ hai đường thẳng MHMK lần lượt vuông góc với (P)(Q). Hỏi:

a) Hai đường thẳng MHMK có nằm trong (R) không?

b) Đường thẳng a có vuông góc với (R) không?

Phương pháp giải:

Sử dụng định lí 1: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Lời giải chi tiết:

a) Ta có:

M(R)MH(P)(R)(P)}MH(R)M(R)MK(Q)(R)(Q)}MK(R)

b) Ta có:

MH(P)MHaMK(Q)MKaMH,MK(R)}a(R)

Thực hành 2

Tứ diện ABCDAB(BCD). Trong tam giác BCD vẽ đường cao BEDF cắt nhau tại O. Trong mặt phẳng (ACD) vẽ DK vuông góc với AC tại K. Gọi H là trực tâm của tam giác ACD. Chứng minh rằng:

a) (ADC)(ABE)(ADC)(DFK);

b) OH(ADC).

Phương pháp giải:

‒ Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng.

‒ Cách chứng minh đường thẳng vuông góc với mặt phẳng:

+ Cách 1: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

+ Cách 2: sử dụng định lí: Nếu hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba.

Lời giải chi tiết:

a) Ta có:

AB(BCD)ABCDBECE}CD(ABE)

Lại có CD(ADC)

Vậy (ADC)(ABE)

AB(BCD)ABDFDFBC}DF(ABC)DFACDKAC}AC(DFK)

Lại có AC(ADC)

Vậy (ADC)(DFK)

b) Ta có:

(ADC)(ABE)(ADC)(DFK)(ABE)(DFK)=OH}OH(ADC)

Vận dụng 2

Nêu cách đặt một quyển sách lên mặt bàn sao cho tất cả các trang sách đều vuông góc với mặt bàn.

Phương pháp giải:

Sử dụng định lí: Nếu hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba.

Lời giải chi tiết:

Ta mở quyển sách ra và đặt quyển sách lên mặt bàn sao cho hai mép dưới của bìa sách nằm trên mặt bàn.


Cùng chủ đề:

Giải mục 3 trang 48 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 54, 55 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 59, 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 62, 63, 64 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 67, 68 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 67, 68, 69 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 73, 74, 75 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 77, 78 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 82, 83 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 3 trang 90, 91 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 3 trang 94, 95 SGK Toán 11 tập 1 - Chân trời sáng tạo