Giải mục 4 trang 57,58,59 SGK Toán 12 tập 2 - Cánh diều
Điều kiện song song, vuông góc của hai mặt phẳng
HĐ8
Trả lời câu hỏi Hoạt động 8 trang 57 SGK Toán 12 Cánh diều
Cho mặt phẳng \(({P_1}):2x + 2y + 2z + 1 = 0\) (1) và mặt phẳng \(({P_2}):x + y + z - 1 = 0\) (2).
a) Gọi \(\overrightarrow {{n_1}} = (2;2;2),\overrightarrow {{n_2}} = (1;1;1)\) lần lượt là vecto pháp tuyến của hai mặt phẳng \(({P_1}),({P_2})\) (Hình 14). Tìm liên hệ giữa \(\overrightarrow {{n_1}} \) và \(2\overrightarrow {{n_2}} \)
b) Tìm các hệ số tự do \({D_1},{D_2}\) lần lượt trong hai phương trình (1), (2). So sánh \({D_1}\) và \(2{D_2}\)
c) Nêu vị trí tương đối của hai mặt phẳng \(({P_1}),({P_2})\)
Phương pháp giải:
a), (b) Xác định \(\overrightarrow {{n_1}} \) và \(2\overrightarrow {{n_2}} \), \({D_1}\) và \(2{D_2}\) rồi so sánh
b) Quan sát hình vẽ
Lời giải chi tiết:
a) \(\;\overrightarrow {{n_1}} = 2\overrightarrow {{n_2}} = (2;2;2)\)
b) \({D_1}\)= 1; \(2{D_2}\) = -2
Vậy \({D_1} \ne 2{D_2}\)
c) \(({P_1})//({P_2})\)
HĐ9
Trả lời câu hỏi Hoạt động 9 trang 58 SGK Toán 12 Cánh diều
Cho mặt phẳng \(({P_1})\) có phương trình tổng quát là \(x + 2y + z + 1 = 0\) và mặt phẳng \(({P_2})\) có phương trình tổng quát là \(3x - 2y + z + 5 = 0\)
Gọi \(\overrightarrow {{n_1}} = (1;2;1),\overrightarrow {{n_2}} = (3; - 2;1)\) lần lượt là vecto pháp tuyến của hai mặt phẳng \(({P_1}),({P_2})\) (Hình 14). Hai vecto \(\overrightarrow {{n_1}} \),\(\overrightarrow {{n_2}} \) có vuông góc với nhau hay không?
Phương pháp giải:
\(\overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0\)
Lời giải chi tiết:
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.3 + 2.( - 2) + 1.1 = 0\) suy ra \(\overrightarrow {{n_1}} \),\(\overrightarrow {{n_2}} \) vuông góc với nhau