Giải toán 12 bài 1 trang 3, 4, 5 Cánh diều — Không quảng cáo

Toán 12 Cánh diều


Lý thuyết Nguyên hàm

1. Khái niệm nguyên hàm Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu F’(x)=f(x) với mọi x thuộc K.

Câu hỏi mục 1 trang 3,4

Khái niệm nguyên hàm

Câu hỏi mục 2 trang 5,6,7

Tính chất của nguyên hàm

Bài 1 trang 7

Hàm số (F(x) = {x^3} + 5) là nguyên hàm của hàm số: A. (f(x) = 3{x^2}) B. (f(x) = frac{{{x^4}}}{4} + 5x + C) C. (f(x) = frac{{{x^4}}}{4} + 5x) D. (f(x) = 3{x^2} + 5x)

Bài 2 trang 7

Tìm nguyên hàm của các hàm số sau: a) \(f(x) = 3{x^2} + x\) b) \(f(x) = 9{x^2} - 2x + 7\) c) \(f(x) = \int {(4x - 3)({x^2}} + 3)dx\)

Bài 3 trang 7

Tìm nguyên hàm F(x) của hàm số \(f(x) = 6{x^5} + 2x - 3\), biết F(-1) = -5

Bài 4 trang 8

Một vườn ươm cây cảnh bán một cây sau 6 năm trồng và uốn tạo dáng. Tốc độ tăng trưởng trong suốt 6 năm được tính xấp xỉ bởi công thức \(h'(t) = 1,5t + 5\), trong đó h(t) (cm) là chiều cao của cây khi kết thúc t (năm). Cây con khi được trồng cao 12cm a) Tìm công thức chỉ chiều cao của cây sau t năm b) Khi được bán, cây cao bao nhiêu cm?

Bài 5 trang 8

Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \(B'(t) = 20{t^3} - 300{t^2} + 1000t\) trong đó t tính bằng giờ (\(0 \le t \le 15\)), B’(t) tính bằng khách/giờ Sau một giờ, 500 người đã có mặt tại lễ hội a) Viết công thức của hàm số B(t) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\) b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội? c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu? d) Tại thời điểm nào thì tốc độ thay đổi lượn

Bài 6 trang 8

Đối với các dự án xây dựng, chi phí nhân công lao động được tính theo số ngày công. Gọi \(m(t)\) là số lượng công nhân được sử dụng ở ngày thứ t (kể từ khi khởi công dự án). Gọi \(M(t)\) là số ngày công được tính đến hết ngày thứ t (kể từ khi khởi công dự án). Trong kinh tế xây dựng, người ta đã biết rằng \(M'(t) = m(t)\) Một công trình xây dựng dự kiến hoàn thành trong 400 ngày. Số lượng công nhân được sử dụng cho bởi hàm số \(m(t) = 800 - 2t\) trong đó t tính theo ngày (\(0 \le t \le 400\)


Cùng chủ đề:

Giải mục 3 trang 76,77,78 SGK Toán 12 tập 1 - Cánh diều
Giải mục 3 trang 85 SGK Toán 12 tập 2 - Cánh diều
Giải mục 4 trang 12 SGK Toán 12 tập 2 - Cánh diều
Giải mục 4 trang 57,58,59 SGK Toán 12 tập 2 - Cánh diều
Giải mục 4 trang 79,80 SGK Toán 12 tập 1 - Cánh diều
Giải toán 12 bài 1 trang 3, 4, 5 Cánh diều
Giải toán 12 bài 1 trang 5, 6, 7 Cánh diều
Giải toán 12 bài 1 trang 5, 6, 7 Cánh diều
Giải toán 12 bài 1 trang 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 Cánh diều
Giải toán 12 bài 1 trang 56,57,58 Cánh diều
Giải toán 12 bài 1 trang 84,85,86 Cánh diều