Những điều kiện nào dưới đây kéo theo hai tam giác vuông đồng dạng.
Cho tam giác ABC vuông cân tại A và tam giác MNP có \(MN = MP = 4cm\) và \(NP = 4\sqrt 2 cm\). Chứng minh rằng \(\Delta ABC\backsim \Delta MNP\)
Hãy liệt kê ba cặp tam giác vuông trong Hình 9.10 đồng dạng và giải thích chúng đồng dạng dựa theo trường hợp nào của hai tam giác vuông đồng dạng?
Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:
Cho tam giác ABC vuông tại A có đường cao AH. Biết rằng \(AB = 6cm\) và \(AC = 8cm\), hãy tính độ dài các đoạn thẳng BC, AH, BH, CH.
Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng: a) (HA.HD = HB.HE = HC.HF);
Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:
Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H).
Cho tứ giác ABCD như Hình 9.11. Biết rằng \(\widehat {BAD} = \widehat {BDC} = {90^0},AD = 4cm,BD = 6cm\) và \(BC = 9cm.\) Chứng minh rằng BC//AD.
Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh rằng:
Cho ABC và A’B’C’ lần lượt là các tam giác vuông tại đỉnh A và A’. Gọi M, M’ lần lượt là trung điểm của AC và A’C’. Chứng minh rằng:
Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.