Hai tam giác có độ dài ba cạnh như sau có đồng dạng không? Vì sao?
Cho hai tam giác ABC và DEF lần lượt có chu vi là 15cm và 20cm. Biết rằng \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{3}{4}.\)
Cho hai tam giác ABC và DEF thỏa mãn \(2AB = 3AC = 4BC\) và \(DE = 6cm,\;DF = 4cm,\;EF = 3cm.\) Chứng minh $\Delta ABC\backsim \Delta DEF$
Cho tam giác ABC và điểm O nằm trong tam giác. Lấy M, N, P là các điểm lần lượt trên các tia OA, OB, OC sao cho \(OA = 3OM,OB = 3ON,OC = 3OP.\)
Cho tam giác ABC có các điểm M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng $\Delta ABC\backsim \Delta MNP$ và tìm tỉ số đồng dạng.
Cho tứ giác ABCD với \(AB = 2cm,AD = 3cm,BD = 4cm,BC = 6cm,CD = 8cm\). Chứng minh rằng $\Delta ABD\backsim \Delta BDC$ và AB song song với CD.
Cho tam giác ABC có độ dài các cạnh là \(AB = 4cm,BC = 5cm,CA = 6cm.\) Tam giác MNP đồng dạng với tam giác ABC và có độ dài cạnh lớn nhất bằng 9cm.
Với hai tam giác ABC và DEF bất kì thỏa mãn \(\frac{{AB}}{{EF}} = \frac{{BC}}{{DF}},\widehat {ABC} = \widehat {DFE}\). Những khẳng định nào sau đây là đúng?
Với hai tam giác bất kì ABC và MNP thỏa mãn \(\widehat {ABC} = \widehat {NMP},\widehat {ACB} = \widehat {MNP}\). Những khẳng định nào sau đây là đúng?
Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho (AM.AB = AN.AC).
Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các tia đối của tia AB và AC sao cho \(\widehat {APQ} = \widehat {ACB}\). Chứng minh rằng:
Cho tam giác ABC và hai điểm M, N lần lượt nằm trên AB, AC sao cho MN song song với BC.
Cho hình thang ABCD (AB//CD). Biết rằng \(AB = 2cm,BD = 4cm,CD = 8cm.\) Chứng minh rằng \(BC = 2AD\)
Cho hình thang ABCD (AB//CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.
Cho tam giác ABC với \(AB = 6cm,AC = 9cm.\) Lấy điểm D trên cạnh AC sao cho \(AD = 4cm.\)
Cho tứ giác ABCD như hình 9.6. Biết rằng \(AB = 2cm,AC = 4cm,AD = 8cm\) và AC là phân giác của góc BAD. Chứng minh \(CD = 2BC\)
Cho tam giác ABC và điểm D trên cạnh AC sao cho \(\widehat {ABD} = \widehat {BCA}.\) Chứng minh rằng: \(A{B^2} = AD.AC\)
Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}.\)
Cho tam giác ABC với \(AB = 6cm,AC = 4cm,BC = 5cm.\) Trên tia đối của tia CA, lấy điểm D sao cho \(CD = CB\). Chứng minh rằng: