Hiệu của hai tập hợp - Phần bù — Không quảng cáo

Lý thuyết Toán lớp 10 Lý thuyết Các phép toán trên tập hợp Toán 10


Hiệu của hai tập hợp. Phần bù

Tập hợp gồm các phần tử thuộc tập hợp A nhưng không thuộc B gọi là hiệu của A và B. Kí hiệu: (A{rm{backslash }}B)

1. Lý thuyết

+ Định nghĩa: hiệu của A và B

Tập hợp gồm các phần tử thuộc tập hợp A nhưng không thuộc B gọi là hiệu của A và B.

+ Kí hiệu: \(A{\rm{\backslash }}B\)

\(A{\rm{\backslash }}B = \{ x \in A|x \notin B\} \)

+ Định nghĩa: Phần bù

Nếu \(A \subset B\) thì hiệu \(A{\rm{\backslash }}B\) gọi là phần bù của A trong B.

+ Kí hiệu: \({C_B}A\)

+ Biểu đồ Ven

+ Xác định hiệu của A và B

Bước 1: Biểu diễn hai tập hợp đó trên trục số.

Bước 2: Gạch bỏ những phần thuộc B trong A. Khi đó phần không bị gạch là hiệu của A và B.

2. Ví dụ minh họa

Ví dụ 1 . Cho tập hợp \(C = \{ 2;3;5;7\} \) và \(D = \{  - 1;3;4;5;9\} \)

Tập hợp \(C{\rm{\backslash }}D = \{ 2;7\} \)

Ví dụ 2. Cho tập hợp \(A = ( - 3;5]\) và \(B = [1; + \infty )\). Xác định \(A{\rm{\backslash }}B\) và \({C_\mathbb{R}}\left( {A \cap B} \right)\).

Vậy \(A{\rm{\backslash }}B = ( - 3;1)\)

Ta có: \(A \cap B = ( - 3;5] \cap [1; + \infty ) = [1;5]\)

Suy ra \({C_\mathbb{R}}\left( {A \cap B} \right) = \mathbb{R}{\rm{\backslash }}[1;5] = ( - \infty ;1) \cup (5; + \infty )\)


Cùng chủ đề:

Giao của hai tập hợp - Cách tìm tập giao
Hàm số - Cách cho một hàm số
Hàm số bậc hai - Đồ thị hàm số bậc hai
Hàm số chẵn, hàm số lẻ - Xét tính chẵn lẻ của hàm số
Hàm số đồng biến - Hàm số nghịch biến - Sự biến thiên của hàm số
Hiệu của hai tập hợp - Phần bù
Hợp của hai tập hợp - Cách tìm hợp của hai hay nhiều tập hợp
Khái niệm mệnh đề - Tính đúng sai của một mệnh đê·
Kí hiệu với mọi, tồn tại - Tính đúng sai của mẹnh đề chứa kí hiệu với mọi, tồn tại
Lý thuyết Toán lớp 10
Lý thuyết toán 10 bài bất phương trình bậc nhất hai ẩn