Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Cánh Diều — Không quảng cáo

Toán 12 Cánh diều


Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Cánh Diều

1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto

1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto

Trong không gian Oxyz, cho hai vecto \(\overrightarrow a  = (x;y;z)\) . \(\overrightarrow b  = (x';y';z')\) . Ta có:

· \(\overrightarrow a  + \overrightarrow b  = (x + x';y + y';z + z')\)

· \(\overrightarrow a  - \overrightarrow b  = (x - x';y - y';z - z')\)

\(k\overrightarrow a  = (kx;ky;kz)\) với k là một số thực

2. Tọa độ trung điểm đoạn thẳng. Tọa độ trọng tâm tam giác

Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A({x_A};{y_A};{z_A}),B({x_B};{y_B};{z_B}),C({x_C};{y_C};{z_C})\) . Khi đó:

· Tọa độ trung điểm của đoạn thẳng AB là \(\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\)

Tọa độ trọng tâm tam giác ABC là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{2};\frac{{{y_A} + {y_B} + {y_C}}}{2};\frac{{{z_A} + {z_B} + {z_C}}}{2}} \right)\)

3. Biểu thức tọa độ của tích vô hướng

Trong không gian Oxyz, tích vô hướng của hai vecto \(\overrightarrow a  = (x;y;z)\) \(\overrightarrow b  = (x';y';z')\) được xác định bởi công thức \(\overrightarrow a  \cdot \overrightarrow b  = xx' + yy' + zz'\)

4. Cách tìm tọa độ của một vecto vuông góc với hai vecto cho trước

Cho hai vecto \(\overrightarrow a  = (x;y;z)\) \(\overrightarrow b  = (x';y';z')\) không cùng phương.

Khi đó, vecto \(\overrightarrow w  = (yz' - y'z;zx' - z'x;xy' - x'y)\) vuông góc với cả hai vecto \(\overrightarrow a \) \(\overrightarrow b \)


Cùng chủ đề:

Giải toán 12 bài tập cuối chương 2 trang 82,83 Cánh diều
Giải toán 12 bài tập cuối chương 3 trang 93 Cánh diều
Giải toán 12 bài tập cuối chương 4 trang 42,43,44 Cánh diều
Giải toán 12 bài tập cuối chương 4 trang 87, 88, 89 Cánh diều
Giải toán 12 bài tập cuối chương 6 trang 103 Cánh diều
Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Cánh Diều
Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Cánh Diều
Lý thuyết Khảo sát sự biến thiên và vẽ đồ thị của hàm số Toán 12 Cánh Diều
Lý thuyết Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Cánh Diều
Lý thuyết Lý thuyết Tích phân Toán 12 Cánh Diều
Lý thuyết Nguyên hàm Toán 12 Cánh Diều