Giải toán 12 bài tập cuối chương 4 trang 87, 88, 89 Cánh diều — Không quảng cáo

Toán 12 Cánh diều


Bài 1 trang 87

Mặt phẳng (P): có một vectơ pháp tuyến là: A. \(\overrightarrow {{n_1}} = \left( {3;4;5} \right)\). B. \(\overrightarrow {{n_2}} = \left( {3; - 4;5} \right)\). C. \(\overrightarrow {{n_3}} = \left( { - 3;4;5} \right)\). D. \(\overrightarrow {{n_4}} = \left( {3;4; - 5} \right)\).

Bài 2 trang 87

Đường thẳng \(d:\frac{{x - 2}}{3} = \frac{{y - 3}}{6} = \frac{{z - 1}}{9}\) có một vectơ chỉ phương là: A. \(\overrightarrow {{u_1}} = \left( {2;3;1} \right)\). B. \(\overrightarrow {{u_2}} = \left( {6;3;9} \right)\). C. \(\overrightarrow {{u_3}} = \left( {3;9;6} \right)\). D. \(\overrightarrow {{u_4}} = \left( {1;2;3} \right)\).

Bài 3 trang 87

a) Mặt cầu (S): có bán kính là: A. 10. B. 11. C. 12. D. 13. b) Tọa độ tâm của mặt cầu (S): \({\left( {x - 5} \right)^2} + {\left( {y + 6} \right)^2} + {\left( {z - 7} \right)^2} = 8\) là: A. (-5; 6; 7). B. (5; 6; -7). C. (5; -6; 7). D. (-5; 6; 7).

Bài 4 trang 87

Khoảng cách từ điểm M(a; b; c) đến mặt phẳng \(x - a - b - c = 0\) là: A. \(\left| {a + b} \right|\). B. \(\left| {b + c} \right|\). C. \(\left| {c + a} \right|\). D. \(\frac{{\left| {b + c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\).

Bài 5 trang 87

Cho bốn điểm A(0; 1; 3), B(-1; 0; 5), C(2; 0; 2) và D(1; 1; -2). a) Tìm tọa độ của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) và một vectơ vuông góc với cả hai vectơ đó. b) Viết phương trình tham số và phương trình chính tắc của đường thẳng AB và AC. c) Viết phương trình tổng quát của mặt phẳng (ABC). d) Chứng minh rằng bốn điểm A, B, C, D không đồng phẳng. e) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

Bài 6 trang 87

Viết phương trình tổng quát của mặt phẳng (P) trong mỗi trường hợp sau: a) (P) đi qua điểm M(-3; 1; 4) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 4;1} \right)\); b) (P) đi qua điểm N(2; -1; 5) và có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 3; - 2} \right)\) và \(\overrightarrow {{u_2}} = \left( { - 3;4;1} \right)\); c) (P) đi qua điểm I(4; 0; -7) và song song với mặt phẳng \(\left( Q \right):2x + y - z - 3 = 0\); d) (P) đi qua điểm K(-4; 9; 2)

Bài 7 trang 88

Viết phương trình của mặt cầu (S) trong mỗi trường hợp sau: a) (S) có tâm I(4; -2; 1) và bán kính \(R = 9\); b) (S) có tâm I(3; 2; 0) và đi qua điểm M(2; 4; -1); c) (S) có đường kính là đoạn thẳng AB với A(1; 2; 0) và B(-1; 0; 4).

Bài 8 trang 88

Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x + 1}}{3} = \frac{{y + 5}}{4} = \frac{{z - 5}}{{ - 1}}\) và \({\Delta _2}:\frac{{x + 13}}{5} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 17}}{7}\); b) \({\Delta _1}:\frac{{x - 2}}{2} = \frac{{y + 1}}{3} = \frac{{z - 4}}{{ - 7}}\) và \({\Delta _2}:\frac{{x + 10}}{{ - 6}} = \frac{{y + 19}}{{ - 9}} = \frac{{z - 45}}{{21}}\); c) \({\Delta _1}:\frac{{x + 3}}{1} = \frac{{y - 5}}{1

Bài 9 trang 88

Tính góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\), biết: \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y = 2 - \sqrt 2 {t_1}\\z = 3 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 3 + {t_2}\\y = 1 + {t_2}\\z = 5 - \sqrt 2 {t_2}\end{array} \right.\) ( là tham số) (làm tròn kết quả đến hàng đơn vị của độ).

Bài 10 trang 88

Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) (làm tròn kết quả đến hàng đơn vị của độ), biết \(\Delta :\left\{ \begin{array}{l}x = - 1 + 2t\\y = 4 - 3t\\z = - 1 + 4t\end{array} \right.\) (t là tham số) và \(\left( P \right):x + y + z + 3 = 0\).

Bài 11 trang 88

Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right):2x + 2y - z - 1 = 0\) và \(\left( {{P_2}} \right):x - 2y - 2z + 3 = 0\).

Bài 12 trang 88, 89

Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'D' có O(0; 0; 0), B(a; 0; 0), D(0; a; 0), O'(0; 0; a) với a > 0. a) Chứng minh rằng đường chéo O'C vuông góc với mặt phẳng (OB'D'). b) Chứng minh rằng giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'. c) Tính khoảng cách từ điểm B' đến mặt phẳng (C'BD). d) Tính côsin của góc giữa hai mặt phẳng (CO'D) và (C'BD).

Bài 13 trang 89

Hình 43 minh hoạ đường bay của một chiếc trực thăng H cất cánh từ một sân bay. Xét hệ trục toạ độ Oxyz có gốc toạ độ O là chân tháp điều khiển của sân bay; trục Ox là hướng đông (Ð), trục Oy là hướng bắc (B) và trục Oz là trục thẳng đứng, đơn vị trên mỗi trục là kilômét.

Bài 14 trang 89

Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \(\overrightarrow u = \left( {91;75;0} \right)\) hướng về đài kiểm soát không lưu (Hình 44).


Cùng chủ đề:

Giải toán 12 bài 4 trang 28, 29, 30 Cánh diều
Giải toán 12 bài tập cuối chương 1 trang 45,46,47 Cánh diều
Giải toán 12 bài tập cuối chương 2 trang 82,83 Cánh diều
Giải toán 12 bài tập cuối chương 3 trang 93 Cánh diều
Giải toán 12 bài tập cuối chương 4 trang 42,43,44 Cánh diều
Giải toán 12 bài tập cuối chương 4 trang 87, 88, 89 Cánh diều
Giải toán 12 bài tập cuối chương 6 trang 103 Cánh diều
Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Cánh Diều
Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Cánh Diều
Lý thuyết Khảo sát sự biến thiên và vẽ đồ thị của hàm số Toán 12 Cánh Diều
Lý thuyết Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Cánh Diều