Giải toán 12 bài tập cuối chương 2 trang 82,83 Cánh diều — Không quảng cáo

Toán 12 Cánh diều


Bài 1 trang 82

Cho điểm M thỏa mãn (overrightarrow {OM} = 3overrightarrow i + 4overrightarrow j + 2overrightarrow k ). Tọa độ của điểm M là: A. (2;3;4) B. (3;4;2) C. (4,2,3) D. (3;2;4)

Bài 2 trang 82

Cho hai điểm M(1;-2;3) và N(3;4;-5). Tọa độ của vecto \(\overrightarrow {NM} \) là: A. (-2;6;8) B. (2;6;-8) C. (-2;6;-8) D. (-2;-6;8)

Bài 3 trang 82

Cho hai vecto \(\overrightarrow u = (3; - 4;5),\overrightarrow v = (5;7; - 1)\). Tọa độ của vecto \(\overrightarrow u + \overrightarrow v \) là: A. (8;3;4) B. (-2;-11;6) C. (2;11;-6) D. (-8;-3;-4)

Bài 4 trang 82

Cho hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (5;4; - 1)\). Tọa độ của vecto \(\overrightarrow u - \overrightarrow v \) là: A. (4;6;4) B. (-4;-6;4) C. (4;6;-4) D. (-4;-6;-4)

Bài 5 trang 82

Cho vecto \(\overrightarrow u = (1; - 1;3)\). Tọa độ của vecto \( - 3\overrightarrow u \) là: A. (3;-3;9) B. (3;-3;-9) C. (-3;3;-9) D. (3;3;9)

Bài 6 trang 82

Độ dài của vecto \(\overrightarrow u = (2; - 2;1)\) là: A. 9 B. 3 C. 2 D. 4

Bài 7 trang 82

Tích vô hướng của hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (3;4; - 5)\) là: A. \(\sqrt {14} .\sqrt {50} \) B. \( - \sqrt {14} .\sqrt {50} \) C. 20 D. -20

Bài 8 trang 82

Khoảng cách giữa hai điểm I(1;4;-7) và K(6;4;5) là: A. 169 B. 13 C. 26 D. 6,5

Bài 9 trang 82

Cho hai điểm M(1;-2;3) và N(3;4;-5). Trung điểm của đoạn thẳng MN có tọa độ là: A. (-2;1;1) B (2;1;1) C. (-2;1;-1) D. (2;1;-1)

Bài 10 trang 82

Cho tam giác MNP có M(0;2;1), N(-1;-2;3) và P(1;3;2). Trọng tâm của tam giác MNP có tọa độ là: A. (0;1;2) B. (0;3;6) C. (0;-3;-6) D. (0;-1;-2)

Bài 11 trang 83

Cho hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (3;4; - 5)\). Hãy chỉ ra tọa độ của một vecto \(\overrightarrow w \) khác \(\overrightarrow 0 \) vuông góc với cả hai vecto \(\overrightarrow u \) và \(\overrightarrow v \)

Bài 12 trang 83

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AA’ và CC’. Tính góc giữa hai vecto \(\overrightarrow {MN} \) và \(\overrightarrow {AD'} \)

Bài 13 trang 83

Xét hệ tọa độ Oxyz gắn với hình lập phương ABCD.A’B’C’D’ như Hình 39, đơn vị của mỗi trục bằng độ dài cạnh hình lập phương. Biết A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1). a) Xác định tọa độ các đỉnh còn lại của hình lập phương ABCD.A’B’C’D’ b) Xác định tọa độ trọng tâm G của tam giác A’BD c) Xác định tọa độ các vecto \(\overrightarrow {OG} \) và \(\overrightarrow {OC'} \). Chứng minh rằng ba điểm O, G, C’ thẳng hàng và \(OG = \frac{1}{3}OC\)

Bài 14 trang 83

Trong không gian với hệ tọa độ Oxyz, cho A(2;0;-3), B(0;-4;5) và C(-1;2;0). a) Chứng minh rằng ba điểm A, B, C không thằng hàng b) Tìm tọa độ của điểm D sao cho tứ giác ABCD là hình bình hành c) Tìm tọa độ trọng tâm G của tam giác ABC d) Tính chu vi của tam giác ABC e) Tính (cos overrightarrow {BAC} )

Bài 15 trang 83

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)


Cùng chủ đề:

Giải toán 12 bài 3 trang 17,18,19 Cánh diều
Giải toán 12 bài 3 trang 74,75,76 Cánh diều
Giải toán 12 bài 3 trang 81, 82, 83, 84, 85, 86, 87 Cánh diều
Giải toán 12 bài 4 trang 28, 29, 30 Cánh diều
Giải toán 12 bài tập cuối chương 1 trang 45,46,47 Cánh diều
Giải toán 12 bài tập cuối chương 2 trang 82,83 Cánh diều
Giải toán 12 bài tập cuối chương 3 trang 93 Cánh diều
Giải toán 12 bài tập cuối chương 4 trang 42,43,44 Cánh diều
Giải toán 12 bài tập cuối chương 4 trang 87, 88, 89 Cánh diều
Giải toán 12 bài tập cuối chương 6 trang 103 Cánh diều
Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Cánh Diều