Lý thuyết Cấp số nhân - SGK Toán 11 Cùng khám phá — Không quảng cáo

Toán 11, giải toán 11 cùng khám phá Bài 3. Cấp số nhân Toán 11 Cùng khám phá


Lý thuyết Cấp số nhân - SGK Toán 11 Cùng khám phá

1. Cấp số nhân

1. Cấp số nhân

Cấp số nhân là một dãy số, trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng ngay trước nó với một số không đổi q, nghĩa là:

\({u_n} = {u_{n - 1}}.q,n \in {\mathbb{N}^*}\)

Số q được gọi là công bội của cấp số nhân.

* Chú ý:

- Nếu q = 1 thì cấp số nhân là dãy số không đổi: \({u_1},{u_1},...,{u_1},...\)

- Dãy \(\left( {{u_n}} \right)\) là cấp số nhân thì \({u_k}^2 = {u_{k - 1}}.{u_{k + 1}}\left( {k \ge 2} \right)\).

2. Số hạng tổng quát của cấp số nhân

Nếu một cấp số nhân có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\)của nó được xác định bởi công thức

\({u_n} = {u_1}.{q^{n - 1}},n \ge 2\)

3. Tổng của n số hạng đầu của một cấp số nhân

Cho cấp số nhân \(\left( {{u_n}} \right)\)với công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n}\). Khi đó

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)


Cùng chủ đề:

Giải toán 11 bài tập cuối chương VII trang 50, 51 Cùng khám phá
Giải toán 11 bài tập cuối chương VIII trang 89, 90 Cùng khám phá
Lý thuyết Các phép biến đổi lượng giác - SGK Toán 11 Cùng khám phá
Lý thuyết Các tứ phân vị của mẫu số liệu ghép nhóm - SGK Toán 11 Cùng khám phá
Lý thuyết Cấp số cộng - SGK Toán 11 Cùng khám phá
Lý thuyết Cấp số nhân - SGK Toán 11 Cùng khám phá
Lý thuyết Dãy số - SGK Toán 11 Cùng khám phá
Lý thuyết Giá trị lượng giác của góc lượng giác - SGK Toán 11 Cùng khám phá
Lý thuyết Giới hạn của dãy số - SGK Toán 11 Cùng khám phá
Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá
Lý thuyết Góc lượng giác - SGK Toán 11 Cùng khám phá