Lý thuyết liên hệ giữa dây và khoảng cách từ tâm đến dây — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây


Lý thuyết liên hệ giữa dây và khoảng cách từ tâm đến dây

Trong một đường tròn: Hai dây bằng nhau thì cách đều tâm. Hai dây cách đều tâm thì bằng nhau.

Liên hệ giữa dây và khoảng cách từ tâm đến dây

Định lý 1: Trong một đường tròn:

a) Hai dây bằng nhau thì cách đều tâm.

b) Hai dây cách đều tâm thì bằng nhau.

Định lý 2. Trong hai dây của một đường tròn:

a) Dây nào lớn hơn thì dây đó gần tâm hơn.

b) Dây nào gần tâm hơn thì dây đó lớn hơn.

Xét đường tròn (O):

\(\begin{array}{l}OH \bot AB\left( {H \in AB} \right)\\OK \bot CD\left( {K \in CD} \right)\end{array}\)

Khi đó:

\(\begin{array}{l}AB = CD \Leftrightarrow OH = OK\\AB > CD \Leftrightarrow OH < OK\end{array}\)

CÁC DẠNG TOÁN THƯỜNG GẶP

So sánh hai đoạn thẳng

Phương pháp:

Ta thường sử dụng các kiến thức sau:

- Trong một đường tròn:

+ Hai dây bằng nhau thì cách đều tâm.

+ Hai dây cách đều tâm thì bằng nhau.

- Trong hai dây của một đường tròn:

+ Dây nào lớn hơn thì dây đó gần tâm hơn.

+ Dây nào gần tâm hơn thì dây đó lớn hơn,

- Chứng minh hai tam giác bằng nhau, quan hệ giữa các yếu tố trong tam giác.


Cùng chủ đề:

Lý thuyết góc nội tiếp
Lý thuyết góc ở tâm. Số đo cung
Lý thuyết góc tạo bởi tia tiếp tuyến và dây cung
Lý thuyết hàm số bậc nhất
Lý thuyết liên hệ giữa cung và dây
Lý thuyết liên hệ giữa dây và khoảng cách từ tâm đến dây
Lý thuyết liên hệ giữa phép chia và phép khai phương
Lý thuyết liên hệ giữa phép nhân và phép khai phương
Lý thuyết một số hệ thức về cạnh và đường cao trong tam giác vuông
Lý thuyết nhắc lại và bổ sung các khái niệm về hàm số
Lý thuyết tứ giác nội tiếp