Lý thuyết liên hệ giữa phép nhân và phép khai phương — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 3. Liên hệ giữa phép nhân và phép khai phương


Lý thuyết liên hệ giữa phép nhân và phép khai phương

1. Định lí. Với các số a và b không âm ta có: √(a.b)= √a.√b.

1. Định lí

Với các số \(a\) và \(b\) không âm ta có: \( \sqrt{a.b}=\sqrt a. \sqrt b\)

Lưu ý:

+) Với hai biểu thức không âm A và B, ta cũng có: \( \sqrt{A.B}=\sqrt A. \sqrt B\)

+) Nếu không có điều kiện A và B không âm thì không thể viết đẳng thức trên.

Chẳng hạn \( \sqrt{(-9).(-4)}\) được xác định nhưng đẳng thức \(\sqrt {(-9)}. \sqrt {(-4)}\) không xác định.

2. Áp dụng

a. Quy tắc khai phương một tích

Muốn khai phương một tích của những số không âm, ta có thể khai phương từng thừa số rồi nhân các kết quả với nhau.

+ Mở rộng: Với các số \(a, b,c\) không âm ta có: \( \sqrt{a.b.c}=\sqrt a. \sqrt b.\sqrt c \)

b. Quy tắc nhân các căn bậc hai

Muốn nhân các căn bậc hai của những số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó.

+ Mở rộng: Với các số \(a, b,c\) không âm ta có: \( \sqrt a. \sqrt b .\sqrt c=\sqrt{a.b.c}\).

+ Với biểu thức \(A\) không âm, ta có: \({\left( {\sqrt A } \right)^2} = \sqrt {{A^2}}  = A\)

3. Dạng toán cơ bản

Dạng 1: Thực hiện phép tính

Sử dụng: Với hai biểu thức không âm A và B, ta có: \( \sqrt{A.B}=\sqrt A. \sqrt B\)

Ví dụ: \(\sqrt {32}  + \sqrt 8  = \sqrt {16.2}  + \sqrt {4.2} \)\( = \sqrt {16} .\sqrt 2  + \sqrt 4 .\sqrt 2 \)\( = 4\sqrt 2  + 2\sqrt 2  = 6\sqrt 2 \)

Dạng 2: Rút gọn biểu thức

Sử dụng: Với hai biểu thức không âm A và B, ta có: \( \sqrt{A.B}=\sqrt A. \sqrt B\)

Ví dụ:

\(\begin{array}{l} \sqrt {9\left( {{x^2} - 2x + 1} \right)} = \sqrt 9 .\sqrt {{x^2} - 2x + 1} \\ = 3.\sqrt {{{\left( {x - 1} \right)}^2}} = 3\left| {x - 1} \right| \end{array}\)


Cùng chủ đề:

Lý thuyết góc tạo bởi tia tiếp tuyến và dây cung
Lý thuyết hàm số bậc nhất
Lý thuyết liên hệ giữa cung và dây
Lý thuyết liên hệ giữa dây và khoảng cách từ tâm đến dây
Lý thuyết liên hệ giữa phép chia và phép khai phương
Lý thuyết liên hệ giữa phép nhân và phép khai phương
Lý thuyết một số hệ thức về cạnh và đường cao trong tam giác vuông
Lý thuyết nhắc lại và bổ sung các khái niệm về hàm số
Lý thuyết tứ giác nội tiếp
Lý thuyết về bảng căn bậc hai
Lý thuyết về bảng lượng giác