Lý thuyết Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Cánh Diều — Không quảng cáo

Toán 12 Cánh diều


Lý thuyết Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Cánh Diều

1. Định nghĩa

1. Định nghĩa

Xét mẫu số liệu ghép nhóm cho trong bảng sau:

  • Gọi \(\overline x \) là số trung bình cộng của mẫu số liệu đó. Số:

\[{s^2} = \frac{{{n_1}{{({x_1} - \overline x )}^2} + ... + {n_m}{{({x_m} - \overline x )}^2}}}{n}\]

được gọi là phương sai của mấu số liệu đó.

Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu là s, là căn bậc hai số học của phương sai của mẫu số liệu ghép nhóm, tức là \(s = \sqrt {{s^2}} .\)

2. Ý nghĩa

  • Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm là các xấp xỉ cho phương sai, độ lệch chuẩn của mẫu số liệu gốc, dùng để đo mức độ phân tán của mẫu số liệu ghép nhóm đó.
  • Độ lệch chuẩn có cùng đơn vị với mẫu số liệu
  • Khi hai mẫu số liệu ghép nhóm có cùng đơn vị đo và có số trung bình cộng bằng nhau (hoặc xấp xỉ bằng nhau), mẫu số liệu nào có độ lệch chuẩn nhỏ hơn thì mức phân tán (so với số trung bình cộng) của các số liệu trong mẫu đó thấp hơn

Ví dụ: Anh An đầu tư số tiền bằng nhau vào hai lĩnh vực kinh doanh A, B. Anh An thống kê số tiền thu được mỗi tháng trong vòng 60 ngày theo mỗi lĩnh vực có kết quả như sau:

So sánh giá trị trung bình và độ lệch chuẩn của số tiền thu được mỗi tháng khi đầu tư vào mỗi lĩnh vực A, B. Đầu tư vào lĩnh vực nào “rủi ro” hơn?

Giải:

Chọn giá trị đại diện cho các nhóm số liệu ta có:

Số tiền trung bình thu được khi đầu tư vào các lĩnh vực A, B tương ứng là:

\(\overline {{x_A}}  = \frac{1}{{60}}(5.7,5 + ... + 5.27,5) = 17,5\) (triệu đồng)

\(\overline {{x_B}}  = \frac{1}{{60}}(20.7,5 + ... + 20.27,5) = 17,5\) (triệu đồng)

Như vậy, về trung bình đầu tư vào các lĩnh vực A, B số tiền thu được hàng tháng như nhau.

Độ lệch chuẩn của số tiền thu được hàng tháng khi đầu tư vào các lĩnh vực A, B tương ứng là:

\({s_A} = \sqrt {\frac{1}{{60}}(5.7,{5^2} + ... + 5.27,{5^2} - 17,{5^2}}  = 5\)

\({s_B} = \sqrt {\frac{1}{{60}}(20.7,{5^2} + ... + 20.27,{5^2} - 17,{5^2}}  \approx 8,42.\)

Như vậy, độ lệch chuẩn của mẫu số liệu về số tiền thu được hàng tháng khi đầu tư vào lĩnh vực B cao hơn khi đầu tư vào lĩnh vực A. Người ta nói rằng, đầu tư vào lĩnh vực B là “rủi ro” hơn.


Cùng chủ đề:

Lý thuyết Khảo sát sự biến thiên và vẽ đồ thị của hàm số Toán 12 Cánh Diều
Lý thuyết Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Cánh Diều
Lý thuyết Lý thuyết Tích phân Toán 12 Cánh Diều
Lý thuyết Nguyên hàm Toán 12 Cánh Diều
Lý thuyết Nguyên hàm của một hàm số sơ cấp Toán 12 Cánh Diều
Lý thuyết Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Cánh Diều
Lý thuyết Phương trình mặt phẳng Toán 12 Cánh Diều
Lý thuyết Phương trình đường thẳng Toán 12 Cánh Diều
Lý thuyết Tính đơn điệu của hàm số Toán 12 Cánh Diều
Lý thuyết Tọa độ của vecto Toán 12 Cánh Diều
Lý thuyết Ứng dụng hình học của tích phân Toán 12 Cánh Diều