Processing math: 100%

Lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài 4. Phương trình lượng giác cơ bản Toán 11 kết nối t


Lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Kết nối tri thức

1. Khái niệm phương trình tương đương

1. Khái niệm phương trình tương đương

Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.

Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết f(x)=0g(x)=0

*Chú ý: Hai phương trình vô nghiệm là hai phương trình tương đương.

2. Phương trình sinx=m

Phương trình sinx=m có nghiệm khi và chỉ khi |m|1.

Khi |m|1sẽ tồn tại duy nhất α[π2;π2] thoả mãn sinα=m. Khi đó:

sinx=msinx=sinα [x=α+k2πx=πα+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì sinx=sinαo[x=αo+k360ox=180oαo+k360o(kZ)

b, Một số trường hợp đặc biệt

sinx=0x=kπ,kZ.sinx=1x=π2+k2π,kZ.sinx=1x=π2+k2π,kZ.

3. Phương trình cosx=m

Phương trình cosx=mcó nghiệm khi và chỉ khi |m|1.

Khi |m|1sẽ tồn tại duy nhất α[0;π] thoả mãn cosα=m. Khi đó:

cosx=mcosx=cosα [x=α+k2πx=α+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì cosx=cosαo[x=αo+k360ox=αo+k360o(kZ)

b, Một số trường hợp đặc biệt

cosx=0x=π2+kπ,kZ.cosx=1x=k2π,kZ.cosx=1x=π+k2π,kZ.

4. Phương trình tanx=m

Phương trình tanx=mcó nghiệm với mọi m.

Với mọi mR, tồn tại duy nhất α(π2;π2) thoả mãn tanα=m. Khi đó:

tanx=mtanx=tanαx=α+kπ,kZ.

*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì

tanx=tanαox=αo+k180o,kZ.

5. Phương trình cotx=m

Phương trình cotx=mcó nghiệm với mọi m.

Với mọi mR, tồn tại duy nhất α(0;π) thoả mãn cotα=m. Khi đó:

cotx=mcotx=cotαx=α+kπ,kZ.

*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì

cotx=cotαox=αo+k180o,kZ.

6. Sử dụng máy tính cầm tay tìm góc khi biết giá trị lượng giác của nó

Bước 1. Chọn đơn vị đo góc (độ hoặc radian).

Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX 570VN).

Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX 570VN).

Bước 2. Tìm số đo góc.

Khi biết SIN, COS, TANG của góc αta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím  “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc α


Cùng chủ đề:

Lý thuyết Lôgarit - Toán 11 Kết nối tri thức
Lý thuyết Lũy thừa với số mũ thực - Toán 11 Kết nối tri thức
Lý thuyết Mẫu số liệu ghép nhóm - SGK Toán 11 Kết nối tri thức
Lý thuyết Phép chiếu song song - SGK Toán 11 Kết nối tri thức
Lý thuyết Phép chiếu vuông góc, góc giữa đường thẳng và mặt phẳng - Toán 11 Kết nối tri thức
Lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Kết nối tri thức
Lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Kết nối tri thức
Lý thuyết Thể tích - Toán 11 Kết nối tri thức
Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
Lý thuyết Đường thẳng và mặt phẳng song song - SGK Toán 11 Kết nối tri thức