Lý thuyết về đường kính và dây của đường tròn — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 2. Đường kính và dây của đường tròn


Lý thuyết về đường kính và dây của đường tròn

Lý thuyết về đường kính và dây của đường tròn.

1. So sánh độ dài của đường kính và dây.

Định lý:

Trong các dây của một đường tròn, dây lớn nhất là đường kính.

Xét đường tròn \(\left( {O,R} \right):A \in \left( O \right),B \in \left( O \right) \Rightarrow AB \le 2R\)

2. Quan hệ vuông góc giữa đường kính và dây.

Định lý 1:

- Trong một đường tròn, đường kính vuông góc với một dây thì qua trung điểm của dây ấy.

Xét \((O,R)\):

\(CD\) là đường kính

\(AB\) là dây cung

\(CD \bot AB\) tại \(H\)

\(=> H\) là trung điểm của \(AB\)

Định lý 2: Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.

Xét \((O,R)\):

\(CD\) là đường kính

\(AB\) là dây cung, \(O \notin AB\)

\( H\) là trung điểm của \(AB\), \(H \in CD\)

\(=> \) \(CD \bot AB\) tại \(H\)

3. Các dạng toán thường gặp

Tính độ dài đoạn thẳng và các yếu tố liên quan.

Phương pháp:

Ta thường sử dụng các kiến thức sau:

+) Quan hệ vuông góc giữa đường kính và dây

Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.

+) Dùng định lý Pytago, hệ thức lượng trong tam giác vuông.


Cùng chủ đề:

Lý thuyết về tỷ số lượng giác của góc nhọn
Lý thuyết về ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Lý thuyết về vị trí tương đối của hai đường tròn
Lý thuyết về vị trí tương đối của hai đường tròn (tiếp theo)
Lý thuyết về vị trí tương đối của đường thẳng và đường tròn
Lý thuyết về đường kính và dây của đường tròn
Lý thuyết Đồ thị của hàm số y = ax^2 (a ≠ 0)
Lý thuyết đồ thị của hàm số y = ax + b (a ≠ 0)
Lý thuyết độ dài đường tròn, cung tròn
Lý thuyết đường thẳng song song và đường thẳng cắt nhau
Lý thuyết đường tròn ngoại tiếp, đường tròn nội tiếp